jump to navigation

Tribute given at the Memorial Service for Prof Edmund Zingu held on 25 April 2013 at the University of the Western Cape May 18, 2013

Posted by International.Chair in : Astronomy and Astrophysics (ASTRO), Condensed Matter and Materials Physics (CMMP), History, Policy and Education (HPE) , 1 comment so far

by Prof Patricia Whitelock

I have been asked by Simon Connell, the current President of SAIP to pay tribute to Edmund on behalf of SAIP, but I have also been asked by Ted Williams, the director of the South African Astronomical Observatory to speak on behalf of SAAO. That is important for me as I first met Edmund Zingu in 1995 at the 175th anniversary of the observatory and I came to know him as a personal friend as well as a valued colleague. He was then head of physics at UWC and I had the pleasure of showing him around and was impressed and intrigued by his interest and perceptive questions.  It was the start of a relationship between SAAO and UWC that has gradually strengthened over the years and which will ultimately allow the two organizations to do great things in astrophysics.

You will have your personal memories of Edmund but he was best known to the broader community through his service with SAIP and that is what I want to talk about. As you have already heard Edmund served on the Council of the SAIP for 8 years from 1999 to 2006, as VP from two years while I was President then as President from 2003 to 2004. It would not be an exaggeration to say that when Edmund joined the Council, physics in SA was in crisis. The numbers of undergraduate students enrolling had been dropping for several years, the image of physics among the public and decision makers was poor, finance for physics projects was very limited and the SAIP itself, particularly its leadership, was not representative of the community of physicists in SA,  and people rightly wanted to know what SAIP was going to do.

By the time Edmund left the SAIP council, physics in SA was in a very different place. That was of course due to the combined efforts of a number people, but Edmund was without question was one of the most important. In 2001 Council set up a transformation committee with a very broad mandate to look at all aspects of the SAIP. Edmund and I both served on that committee. The initial driving force for transformation came from Nithaya Chetty, but Edmund, who chaired the committee while he was VP, was absolutely crucial in keeping the debate focused and most importantly keeping us all talking to each other.

These years were particularly exciting as we grappled with the problems in physics at the same time as attempting to restructure the SAIP to play a more relevant role in SA society. My entire experience of working with Edmund was a positive one.  He was someone you could test ideas on and who would tell you very gently and very sympathetically when and why you had got it wrong.  I don’t know if we could have done what we did without him, but I very much doubt it. What I am certain of is that it would have been more difficult and there would have been many more casualties and more blood on the walls. I would like to quote from Jaynie Padayachee, who was secretary of the SAIP during my and Edmund’s presidency and who was also secretary of the transformation committee: “The one thing about Edmund that will always stay with me, is that he personified diplomacy. It was really inspirational (in this world of too many words and opinions) knowing someone who took the time to think about what he was going to say before he said it. “

During my term as President I quickly came to rely on Edmund’s judgment and his support above anything and anyone else.  I suspect that there are many others who must have had similar experiences. He was never heavy handed or unpleasantly forceful, when things were said that he did not agree with he would gently point out that not everyone had the same experience and that there were other ways of looking at issues. It was quiet, it was gentle, it was undemonstrative and it dramatically effective. I quote from Jappie Engelbrecht, who is the treasurer of SAIP, as he was when Edmund and I were President: Japie after reading Simon Connell’s words about Edmund responded “I have nothing to add except my sadness at the passing of a truly great South African, whose impact on my own life enabled me to transform to our new democracy.”His words apply to many of us who worked with Edmund.

Those transformation activities resulted in a revised constitution and by-laws for the SAIP, more involvement of the specialist groups in council, a president who was directly elected by the membership, and a new mindset and symbolism of a new logo to prove it. That of course took several more years.

At roughly the same time that we started the transformation process, in fact really as part of the same initiative we established the process that culminated in an international panel review and the production of a document: “Shaping the future of physics in South Africa”.  This process was lead by Edmund during his presidency and must have taken up a huge amount of his personal time. This led to a new strategy for physics, and among other things establishment of the National Institute of Theoretical Physics (NITheP) and to the increased financial support from government that enabled SAIP to appoint an Executive Officer – which has been so important in allowing SAIP to do things more professionally.

One of the international participants in the shaping the future process, was Jim Gates, who as many of you know is now on USA President’s scientific advisory panel. The following words were written by Jim Gates and express Edmund’s role better than I can:

I am certain now that the Shaping Report has served exceedingly well as a national strategy and planning document for the South African physics community in a manner that none of its authors had foreseen in terms of its scope, duration or effectiveness. Dr. Zingu’s management of the entire Shaping process was a marvelous testament of his dedicated to the health of the physics field in South Africa.   His skills as a manager of personnel were on direct display, from my perspective, in the assembly of the International panel. He chose persons from S.A., from Europe, and the U.S.A. as a reflection of his understanding of the international and global nature of the interaction required for physics to thrive in S.A. in the new millennium. He also saw the International Panel was assembled in such a way as to be a final executive part of the process that lived up to his high expectation and vision.

The Shaping Report is among the greatest of tributes to Dr. Zingu as it continues almost a decade latter to have a substantial impact on thinking about South African physics. The report challenged all of the stake-holding communities to plan on multiple levels. “

He goes on to describe his personal gratitude to Edmund as a mentor for giving him the skills that he has particularly needed and which prepared him for his role as advisor to President Barack Obama

Since leaving the SAIP Council Edmund has continued to serve the community. In particular he has again played the leadership role in the Review of Physics Teaching, which is currently underway – the next big hurdle in the success of physics in SA, or indeed globally. I have no direct experience of his work with this, but Simon Connell tells me that he handled the project magnificently. In fact has been so well constructed by Edmund that neither SAIP nor CHE have any concern about its completion.

There can be no doubt that Physics and South Africa are better off because Edmund Zingu was who he was, when he was. We,as physicists and as friends of Edmund, have every reason to thank his family and to join them in celebration of a life extraordinarily well lived in the service of our community.

Dr. Kartik Sheth, ALMA, and SKA March 19, 2013

Posted by admin in : Astronomy and Astrophysics (ASTRO), Cosmology, Gravitation, and Relativity (CGR) , add a comment

by JC Holbrook

National Society of Black Physicists members Eric Wilcots and Kartik Sheth were part of a new initiative to foster radio astronomy collaborations with South African astronomers and students. Last week marked the official inauguration of ALMA, the Atacama Large Millimeter/Submillimeter Array, in the high altitude Atacama desert of Chile, South America. I was able to sit down with Dr. Sheth to discuss the broader issue of radio astronomy and South Africa.

“I think this celebration was the culmination of thirty years worth of work from a lot of different people. The inauguration of the array was a chance for us to celebrate how much hard work has gone into it.” Dr. Sheth said of the inauguration ceremony in Chile. “We started science operations September 30th of 2011. We have been collecting data for over two and a half years, because even with a small ALMA it is still the most powerful [millimeter/submillimeter] telescope in the world.”

Since ALMA is an array of dishes similar to the radio dishes of the Very Large Array in New Mexico, even during construction as each dish was put into place and connected, the astronomers were already using what was available to collect data. Thus, the months of science data collection with ALMA before the official inauguration.

I pointed out, “You were not even there!”

Dr. Sheth laughed, “Only the dignitaries were invited, so a lot of people from the political arena in the twenty-five plus countries that are part of ALMA. President Piñera inaugurated ALMA…For me it doesn’t mean much… but I’m kinda sad that I’m not there because I really wanted to be there. But I knew that I wasn’t going to be invited, so coming here [to South Africa] really was driven by the NASSP deadline for Master’s proposals.” NASSP is the National Astrophysics and Space Sciences Programme in South Africa. In 2010, I began writing a book about NASSP. The program is a dramatic success story about educating underrepresented groups in astrophysics and space sciences. NASSP include one honor year and a two year masters of science degree. Nearly all NASSP students are funded by the program.

Dr. Sheth explained, “The idea is to foster bridges between the faculty here that are taking on students who eventually want to work with MeerKat and SKA. But MeerKAT and SKA are not built, yet. So, what we would really like the faculty to do is to think about including radio data from existing telescopes and NRAO operates four of them.”

The SKA is currently under construction, yet the South African astronomy students need to learn everything about radio astronomy and the analysis of radio data. Dr. Sheth along with other American radio astronomers is here to encourage South African astronomers and their students the opportunity to learn by working with the existing facilities and their archival data. The four facilities are ALMA, the Robert C. Byrd Greenbank telescope a single dish in West Virginia, the Jansky Very Large Array (JVLA or EVLA) which is the enhanced VLA in New Mexico, and the Very Large Baseline Array (VLBA) which is spread across the Northern Hemisphere. Thus, the visit before the NASSP deadline for submitting Masters of Science thesis proposals. Dr. Sheth hopes that a few NASSP students will propose radio astronomy projects including using NRAO facilities for their Masters work.

According to Dr. Sheth the JVLA is the Northern Hemisphere equivalent of what MeerKat will be. MeerKat is the precursor to the SKA, the Square Kilometer Array.  It is a new state of the art radio observatory currently being built in South Africa. The SKA array itself will consist of 3000 dishes spread across nine African countries: South Africa, Namibia, Botswana, Mozambique, Madagascar, Mauritius, Zambia, Ghana, and Kenya. The SKA Africa headquarters are in Cape Town, South Africa, and they will be coordinating all of the African construction. A question I thought would be uppermost in the minds of South Africans was: Will ALMA be competition for SKA?

His response, “No, not at all. ALMA operates at higher frequencies than what the SKA will operate at. They are not looking at the same part of the electromagnetic spectrum but they will be looking at the same type of objects. EVLA is a mini version of SKA. With the SKA, it will be observing thermal emission and synchrotron emission from sources…” In an email he added, “We are looking at electrons energy as they cool around star forming regions or zip around magnetic fields. So you can get a real idea of the magnetic field that pervades the Milky Way and with the SKA across cosmic time. ALMA cannot really look at atomic gas unless its at very high red shift (i.e. the lines are red shifted into the regime that ALMA can observe) and only using atomic gas tracers like ionized carbon, nitrogen, or oxygen. ALMA cannot look at the atomic hydrogen gas which is emitting in the wavelengths that MeerKat and SKA will work at. So SKA & Meerkat are looking at the atomic gas from which molecular gas forms. And the molecular gas is what ALMA looks at which from stars form. And the stars are what HST and JWST look at. So it is a nice transition.  Together these are giving you the full picture of what the universe looks like. Additionally there is a lot about magnetic fields and transient phenomena — these are also MeerKat and SKA’s core strengths. For instance, these will be excellent instruments for looking at the timing of pulsars.”

Trying to put it altogether I asked, “So, anything that is hot and has electrons moving around will be able to be studied by SKA?”

Kartik Sheth clarified, “No, I wouldn’t call it ‘hot’. The atomic gas is quite cold as well. It is hotter than the molecular gas but not hot compared to stars.”

As a student of astronomy, I had always had a fascination with the connection between wavelengths of light or color, physical properties, chemistry, and celestial bodies. Planetary nebulae, which are mentioned in my last Vector blog, in visible light appear greenish in color. The color is the result of a specific atomic transition in the oxygen atom that occurs under very low density conditions. First the oxygen has to be ionized twice, i.e. it has to have lost two electrons, then it is through collisions that the transitions producing the characteristic green lines emit. A rule-of-thumb temperature for planetary nebulae is 10,000 degrees Kelvin. Thus, if there is a celestial body that appears ‘green’ in visible light you can conclude that it might include oxygen especially if it is a nebula which tends to have low density and it should be around 10,000 degrees Kelvin. Hydrogen is also found in planetary nebulae and the strongest transition line, known as H-alpha, occurs when its electron goes from an excited state to a less excited state releasing energy in the form of red light.

In the case of ALMA and SKA, they are probing two different sections of the electromagnetic spectrum similar to studying green light or red light. In the fullness of time, SKA will cover the same wavelengths and types of celestial bodies as the EVLA but focused on the Southern sky rather than the Northern, but also be more sensitive revealing more physical details. ALMA will add to our understanding of the same region of the sky but is studying different physical properties of celestial bodies. Both will add to our understanding of the Milky Way and the Universe.

NSBP members visit South Africa to strengthen ties March 15, 2013

Posted by admin in : Astronomy and Astrophysics (ASTRO), Cosmology, Gravitation, and Relativity (CGR), History, Policy and Education (HPE), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment

NSBP members Kartik Sheth and Eric Wilcots along with National Radio Astronomy Observatory (NRAO) astronomer Scott Ransom have been in South Africa to cement linkages for a NRAO’s faculty bridge program. NSBP, the South African Institute of Physics (SAIP), NRAO and others are working together on the science dimension of the US-South Africa Bilateral Strategic Dialogue.

The visit is intended to foster partnerships in multi-wavelength astronomy research.  Last week they had meetings with astronomers and cosmologists at University of Cape Town, University of Western Cape, SAAO, the SKA Africa Project Office and the African Institute of Mathematical Sciences (AIMS).  This week they will also meet with high energy astrophysicists at the Potchefstroom campus of North-West University, University of Johannesburg, and University of Witswatersrand, as well as astronomers at the North-West University campus in Mafikeng, and the Hartebeesthoek Radio Astronomy Observatory (HartRAO).

As South Africa builds a second NASSP site, teaching and research partnerships with NRAO will be beneficial on both sides of the Atlantic. NRAO currently operates four premier radio astronomy observatories: ALMA, JVLA, GBT and the VLBA.  NRAO is likely to also be a partner in helping to train scientists across the continent to be operators and users of the African VLBI Network (AVN). The AVN project consists of converting large, redundant telecommunications dishes across Africa for radio astronomy. The AVN will become part of the global VLBI network.

In addition to major radio astronomy successes, South Africa’s strategic plan for astronomy calls for its institutions to be active in multiple wavelengths including radio, optical, gamma/x-ray, and near IR. South Africa is the host of the Southern Africa Large Telescope (SALT), the largest optical telescope in the southern hemisphere. Wilcots is a member of the SALT board. South Africa is also supporting the Namibian bid to host the Cherenkov Telescope Array (CTA), the next generation success to the H.E.S.S telescope that has been in Namibia since 2002. Following an exchange at the 2011 NSBP conference, South Africa and the LIGO Collaboration have begun exploring opportunities in gravitational wave astronomy. Already LIGO and SAIP have convened a faculty workshop and a student summer school, both in Pretoria.

In a separate but simultaneous visit, Jim Gates participated in South Africa’s National Science Festival (SciFest), giving talks at several venues around the country on science policy and supersymmetry.  ScieFest was established in 1996 to promote the public awareness, understanding and appreciation of science, technology, engineering, mathematics and innovation. The main event in Grahamstown, held in March every year, attracts 72,000 visitors from South Africa, Botswana, Lesotho, Mozambique, Namibia, Swaziland and Zimbabwe. Several government departments, listed companies, museums, NGOs, research facilities, science centers, science councils, universities, as well as small, medium and micro enterprises, both from South Africa and abroad contribute to the success of the event.

Gates was on the same program as South Africa’s Minister of Science and Technology, Derek Hanekom.  Each discussed science and innovation policy and gave their perspectives on aligning science with national priorities. Additionally Gates participated in three formal policy meetings, including one with Simphiwe Duma, CEO of the Technology Innovation Agency, and two more informal policy meetings.  In a lecture at the University of South Africa (UNISA) he and Dr. Rob Adam, former head to South Africa’s National Research Foundation, spoke on the efficacy of policy-formation surrounding STEM fields and the innovation cycle.

In other events around the country Gates met 45 students spanning the 8th through 11th grade levels at the Mae Jemison Science Reading Room in the Mamelodi township.  At Nelson Mandela Metropolitan University and the University of Johannesburg he gave talks on the strange mathematical objects found in the equations of supersymmetry.

These meetings and exchanges involving NSBP and South African colleagues are all part of the evolution from ideas put into motion by the Nobel Laureate, Abdus Salaam, and the founders of the Edward Bouchet-Abdus Salaam Institute (EBASI). Over a decade ago former NSBP president, Charles McGruder, traveled to South Africa to explore possible linkages between astronomers.  That visit led to Khotso Mokhele’s participation in the 2004 NSBP conference.  At the time he was the head of South Africa’s National Research Foundation. Later NSBP won a grant from the WK Kellogg Foundation to support NSBP’s participation the NASSP program. In the year’s since, NSBP has partnered with SAIP on a number of projects, and the relationship was codified in at MOU signed at the 2011 NSBP conference and witnessed by Minister Naledi Pandor.  The relationships between NSBP, SAIP as well as colleagues across the entire continent continue to evolve and vistas are opening up in the realms of geophysics, biophysics and medical physics, nuclear and particle physics, mathematical and computational physics, as well as physics education at all levels.

Unfinished Business in Astronomy March 11, 2013

Posted by admin in : Astronomy and Astrophysics (ASTRO) , add a comment

JC Holbrook

My master’s thesis in astronomy at San Diego State University focused on the electron temperature structure of the ionized gas of planetary nebulae. I focused on two planetary nebulae: NGC 6572 and NGC 6543. I observed using the one meter telescope at Mt. Laguna Observatory with a CCD detector. Planetary nebula are created as low mass stars throw off their atmosphere during their transition to white dwarfs. My observations and analysis of NGC 6572 revealed a knot of high temperature gas well away from but connected to the nebula. I could not explain what the knot was but submitted the paper in 1992 to ApJ with my advisor Theodore Daub. The referee reports insisted that we take spectra of the knot. JPL’s Trina Ray took spectra but we still could not identify the hot knot. The project was left behind as I left SDSU for NASA and a doctorate. However, a week ago I looked up images of NGC 6572 and got a big surprise! The Hubble Space Telescope image showed a far bigger nebula than what we could detect twenty years ago! Though it has been several years, looking at the contours I estimate that the hot spot I found, which at that point was at the edge of the nebula, I have marked with a circle in the second image. The structure of NGC 6572 is much more complicated than what I was working with and it is clear that some of the assumptions that went into the temperature would need to be updated to fully determine if the knot was indeed as hot as calculated. Certainly, some eager young astronomy student has already unraveled this bit of unfinished business!

The First Telescope Has Arrived for the Total Solar Eclipse in Cairns and “Black Sun” November 11, 2012

Posted by admin in : Astronomy and Astrophysics (ASTRO), Earth and Planetary Systems Sciences (EPSS) , add a comment

by JC Holbrook

Dr. Alphonse Sterling arrived safely in Cairns with telescope, mount, filters, cameras, and a suitcase. His excess baggage fees were unmentionable. The blue case is the body of the telescope. Alphonse is staying about 30 minutes to the west of Cairns in the Trinity Beach area in a very swank three bedroom apartment with ocean views. He will be sharing the apartment with scientific teammembers students Amy Steele and Roderick Gray.

In preparation for the eclipse, Alphonse has to create a ‘flat’ image as part of the calibration of the flaws in the telescope. When doing traditional night observing at an observatory, flats are taken of the dome. That is, before you start observing you put diffuse light onto the dome of the telescope and take a series of images. What is revealed is any specs of dust in the optics and other flaws. Next, the astronomer would go on to observe the celestial bodies and at dawn take another series of flats. When processing the images of the celestial bodies these flats would be used to remove the optical flaws thus flattening the images. This way what you have is just what is found in space not some artifact left by the optics of the telescope.

When doing observations of the Sun, daytime observing, creating a flat is not so simple. Alphonse has experimented with multiple different light sources to determine which is the best for creating a good flat.
What he found is he has to rig something up himself. That meant that we had to go to the hardware store to find the parts he needed!

After a long search we found: exacto knife, white cardboard, LCD flashlight, masking tape, electrical switch, compass. He had his own wire to create an external switch for his new light source. Over the next couple of days he will be putting everything together. I can’t wait to see what the final device will look like!

Be part of “Black Sun” donate today at
https://www.austinfilm.org/film-black-sun.

Reports from PhysCon November 9, 2012

Posted by admin in : Astronomy and Astrophysics (ASTRO) , add a comment

NSBP members are reporting live from PhysCon. Check back here and follow the #PhysCon hashtag at Twitter for continuous updates.

Professor Mercedes Richards gives plenary talk, “The Incredible Tomography Imaging Technique”.

Tomography is the reconstruction of a multidimensional physical field from its integral projections in different directions.  Tomography can be used in astronomy for systems that are rotating, such as stars, binary systems, extrasolar planets and accretion disks.   Rotation of the system allows astronomers to see multiple angles of the system.  By observing light emissions from accretion disks and taking Doppler shift into account and other relativistic effects, it is possible to derive velocity profiles throughout the disk.   It then possible to reconstruct a velocity space “image” into an actual spatial image of the accretion disk.  Examples of systems include binary stars, and stars near black holes where the black hole is stripping off matter from the star.   Tomography can also be used to  study orbital mechanics.

Since the technique of Doppler tomography was introduced 18 years ago, it has been used to provide indirect images of accretion structures in close binaries which cannot be resolved spatially with the largest telescopes.   The more general technique of tomography has been used successfully in medicine, geophysics, archaeology, and oceanography to construct 3D images from 2D pictures or “slices” through the object collected at many positions around the object.  These slices or projections are represented by the Radon transform.   The 3D image is recovered through a summation process called back projection; and the overall image reconstruction procedure is known as tomography.  In astronomy, the technique can be readily applied to eclipsing binaries and rotating stars, which provide changing views of the system, and the process is called Doppler Tomography because the gas motions detected through Doppler shifts provide an image of the accretion flows in velocity coordinates.

Doppler tomography has been used successfully to produce images of accretion flows in a variety of interacting binaries including the cataclysmic variable stars and x-ray binaries.  It would not have been possible to create these images otherwise since these systems and too distant to be directly imaged.  The major highlights of Doppler tomography have been the discovery of spiral structures in accretion disks, and the comparison of gas stream tomography maps to hydrodynamics models.

Professor Mercedes Richards is in the Department of Astronomy and Astrophysics at Penn State University.  Originally from Jamaica, she attended the University of the West Indies where she graduated with special honors in physics.  She attended graduate school in Canada, earning her Ph.D. at the University of Toronto.   She was recently elected president of the Close Binary Stars commission of the International Astronomical Union.   At PSU she founded a 6-week summer research program for high school students.

NSBP members descend upon Australia for more than just a total solar eclipse November 2, 2012

Posted by admin in : Astronomy and Astrophysics (ASTRO), Cosmology, Gravitation, and Relativity (CGR), Earth and Planetary Systems Sciences (EPSS), History, Policy and Education (HPE) , add a comment

The Total Solar Eclipse is just days away and will cut a path through the South Pacific. This week sees the start of NSBP members traveling to exotic locations to do more than bask in the unique environment of totality. NSBP members will meet in Cairns, Australia, which is predicted to have the best eclipse viewing. Dr. Hakeem Oluseyi of the Florida Institute of Technology will be using the eclipse to study the lower atmosphere of the Sun. He will be working with a group of students and telescopes and cameras to capture scientific images that will inform his research. Dr. Alphonse Sterling, who has yet to attend an NSBP meeting, of NASA Marshall Space Flight Center will be flying in from his assignment in Tokyo, Japan. He too will be taking images of the lower atmosphere of the Sun for his scientific research.

The opportunity to see two African American astrophysicists leading research teams and doing their science was too much for NSBP member Dr. Jarita Holbrook.  She is making a film, Black Sun, to chronicle this event. After a successful Kickstarter campaign, Dr. Holbrook and her documentary film team from KZP Productions began by filming Dr. Sterling during the May annular eclipse in Tokyo. After an amazing experience, an 8-minute short film was made chronicling the event. Now it is time to bring Hakeem into the picture!

Black Sun is still seeking funding to complete this ground-breaking film project. Donations are tax deductable via . Help Jarita to inspire the next generation of African American astrophysicists by donating today – no donation is too small!  Jarita is on her way today to lay the groundwork for the documentary. Follow her tweets @astroholbrook.

Dr. Alphonse Sterling making observations

Dr. Alphonse Sterling analyzing data

8 Policy Issues that Every Physicist Should Follow October 5, 2012

Posted by admin in : Astronomy and Astrophysics (ASTRO), Atomic, Molecular and Optical Physics (AMO), Chemical and Biological Physics (CBP), Condensed Matter and Materials Physics (CMMP), Earth and Planetary Systems Sciences (EPSS), History, Policy and Education (HPE), Medical Physics (MED), Nuclear and Particle Physics (NPP), Photonics and Optics (POP), Physics Education Research (PER), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment

#1. Federal Science Budget and Sequestration
The issue of funding for science is always with us.  With few exceptions everyone seems to agree that investment in science, technology and innovation is fundamentally necessary for America’s national and economic security.  Successive Administrations and Congresses have rhetorically praised science, and have declared that federal science agencies, particular NSF, DOE Office of Science and NIH should see their respective budgets doubled.  Where the rhetoric has met with action in the last decade, recent flat-lined budget increases, and the projections for the next decade erode these increases in real terms, and in fact in the next few years the federal R&D budget could regress back to 2002 levels and in several cases to historic lows in terms of real spending power.

What is sequestration?
Last year Congress passed the Budget Control Act with the goal of cutting federal spending by $1.2T relative to the Congressional Budget Office baseline from 2010 over 10 years.  The broad policy issues in the Budget Control Act follow from the fact that the total amount and the rate of growth of the federal public debt is on an unsustainable path.  The Budget Control Act would only reduce the rate of growth but not reduce the debt itself.  The basic choices are to increase taxes and/or to decrease spending.

The Budget Control Act also established the Joint Select Committee on Deficit Reduction, which was to produce a plan to reach the goal.  If the committee did not agree on a plan, the legislation provided for large, automatic – starting in January 2013 (already one quarter through FY13), across-the-board cuts to federal spending.  This is called sequestration.  The committee could not come to an agreement, and as a result the federal government faces what has been termed a ‘fiscal cliff’ where simultaneously several tax provisions will expire (resulting in tax increases) in addition to the sharp spending cuts.  This will most certainly plunge the economy into a recession.

Sequestration would require at least 8% budget cuts immediately in FY13 (the current year).  In the political lexicon on this topic federal spending is divided into defense and non-defense.  The current formula would put somewhat slightly more of the cuts on non-defense programs, but there is talk of putting all burden of sequestration on non-defense programs.  If the burden is borne only by non-defense programs, some agencies could lose as much as 17%.

It is important to emphasize that these would be immediate cuts starting with FY13 budgets, so a $100K grant for this year would suddenly become $92K, or possibly $83K.  Then from the sequestration budgets, the Budget Control Act would require flat budgets for the subsequent 5 years.  While it would generally be up to the agencies to figure out how to distribute the immediate cuts, it is instructive to see how the cuts would impact agencies that are important overall to physics and astronomy research.

How does it impact physics?
The R&D Budget and Policy Program at AAAS has done a masterful job at analyzing sequestration and its impact on science agencies. The cases of DOD and NIH provide some general indications of the effects of sequestration.  DOD is the single largest supporter of R&D amongst the federal agencies, and NIH is the second largest.  Under sequestration they would lose $7B and $2.5B, respectively.  Inside the DOD number is funding for basic and applied science, including DARPA programs.  These accounts would lose a combined $1.5B.  But there is an important dichotomy between DOD and NIH.  IF the Congress and Administration decide to apply the cuts only to non-defense programs, the cuts at NIH would have to be deeper (to meet the overall targets), while the cuts at DOD would remain unchanged.

At NSF, if the cuts are applied truly across the board, $500M would immediately be eliminated from the agency’s FY13 budget.  In a scenario where the cuts are applied only to non-defense spending the NSF cuts could be just over $1B.  It would be as if the NSF budget had regressed back to 2002 levels, basically wiping out a decade of growth.  To further put these cuts into context, NSF’s total FY13 budget request for research and related activities is $5.7B, including $1.345B for the entire Math and Physical Sciences Directorate.  One billion dollars is what the agency spends on major equipment and facilities construction and on education and human resources combined.  It is by far larger than the Faculty Early Career Development and the Graduate Research Fellowship programs.  And put one last way, the cuts would mean at least 2500 fewer grants awarded.

Under the sequestration scenario where defense and non-defense program bear the brunt of cuts equally, the DOE Office of Science could lose $362M immediately in FY13, while NNSA which funds Lawrence Livermore, Los Alamos, and Sandia national labs, would lose at least $300M.  Again these cuts would be deeper if the Congress votes, and the President agrees to subject the cuts only to non-defense programs.  The Office of Science cut is nearly equivalent to the requested FY13 budget for fusion energy research ($398M).  The Office of Science had enjoyed a fair level of support in the past decade, but sequestration would take the agency back to FY08 spending levels or to FY00 if the cuts are applied to non-defense programs only.

NASA would immediately lose at least $763M with the Science Directorate losing nearly $250M.  Again these cuts would be much deeper if distributed only to non-defense programs.  In that scenario NASA would immediately lose $1.7B in FY13, more than the FY13 budget for James Webb Space Telescope ($627M) or the Astrophysics Division ($659M).

What should you do?
In summary, the overall objective of the Budget Control Act is to reduce the federal deficit by $1.2T over the next decade.  This would slow the rate of increase of the overall federal debt.  The Act was resolution of political gamesmanship over raising debt ceiling, which has to be increased from time to time to authorize the federal government to make outlays encumbered in part by prior year obligations.  The sticky issue was taxes.  The GOP, which generally desires more spending cuts than Democrats, was not willing to agree to anything that involved a tax increase.

Besides wanting to preserve more investments in discretionary programs, President Obama was not willing to push too hard on increasing taxes given the weak economy, and probably wanting to avoid the adverse politics of increasing taxes before the election.  Subsequently because the Congress could not agree on a way to produce $1.2T in deficit reduction over 10 years, the law requires sequestration of FY13 budgets, i.e., immediate and draconian cuts (8-17%), the mechanics of which would have serious adverse effects to the entire US economy.

Both before the election and after you should contact the President, your Senators and Representative, and urge them act urgently to steer the federal government away from sequestration and the fiscal cliff.


#2. Timeliness of Appropriations
What is the issue?
The US Constitution requires that “No money shall be drawn from the treasury, but in consequence of appropriations made by law.” Each year the federal budget process begins on the first Tuesday in February when the President sends the Administration’s budget request to Congress.  In a two-step process Congress authorizes programs and top-line budgets; then it specifically appropriates spending authority to the Administration for those programs.  The federal fiscal year begins on October 1st, and when Congress does not complete their two-step process, operations of the federal government are held in limbo.  Essentially the government is not authorized to spend money.  This is overcome by passing “continuing resolutions” that basically continue the government’s programs at the prior year programmatic and obligating authorities.

How does it affect physics?
Continuing resolutions wreak havoc for the Administration, i.e, for funding agencies, and consequently for federal science programs.  They prevent new programs from coming online and the planned shutdown of programs.  Because federal program directors cannot know what their final obligating authority will ultimately be, they have to be very careful with how much they spend.  The consequences of over-spending obligating authority are unpleasant.  Keeping a science program going under the uncertainty of the continuing resolution is hard, and in some cases impossible.

What should you do?
Physicists would be well advised to tune into the status of appropriations for agencies from which they get funding, plan accordingly, and use their voices to pressure Congress to finish the appropriations process by October 1st.

#3. Availability of Critical Materials: Helium, Mo-99 and Minerals
Helium shortage?
Helium is not only an inordinately important substance in physics research, but also in several other industrial and consumer marketplaces.  But despite its natural abundance, it is difficult to make helium available and usable at a reasonable cost.  Usable helium supplies are actually dwindling at a troubling rate, and price fluctuations are having very undesirable effects in scientific research and other sectors.

Most usable helium is produced as a by-product in natural gas production.  Gas fields in the United States have a higher concentration of helium than those found in other countries.  Those facts, combined with decades of recognition of helium’s value to military and space operations, scientific research and industrial processes, Congress enacted legislation to create the Federal Helium Program, which has the largest reserve of available helium in the world.

Enter the policy issues.  In an effort to downsize the government in 1996, Congress enacted legislation to eliminate the helium reserve by 2015 and to privatize helium production.  But the pricing structure required by the 1996 legislation led to price suppression, and thus private companies have been slow to come into the industry as producers, even as demand has been steadily increasing.  So with the federal government’s looming exit from helium production, it does not seem that there is another entity with the capacity to meet the growing demand of helium at a reasonable price.  The few other sources of usable helium available from other countries have nowhere near the US government’s production capacity.

To address this problem Senator Bingaman of New Mexico introduced the Helium Stewardship Act of 2012.  This is a bipartisan bill sponsored by two Democratic and two Republican Senators.  This legislation would authorize operation of the Federal Helium Program beyond 2015.  It would maintain a roughly 15-year supply for federal users, including the holders of research grants.  This should guarantee federal users, including research grant holders, a supply of helium until about 2030.  It would also set conditions for private corporations to more easily enter the helium production business.

But since no action was taken in this Congress, it will have to be reintroduced in January 2013 when the new Congress convenes, and it will have to be taken up in the House after being passed in the Senate.

[Update] On March 20, 2013 the House Natural Resources Committee unanimously approved legislation that would significantly reform how one-half of the nation’s domestic helium supply is managed and sold. H.R. 527, the Responsible Helium Administration and Stewardship Act would maintain the reserve’s operation, require semi-annual helium auctions, and provide access to pipeline infrastructure for pre-approved bidders, in addition to other provisions on matters such as refining and minimum pricing. The bill now moves to the House floor. On the Senate side, Senators Wyden and Murkowski have released a draft of their legislation addressing this issue.

Mo-99 is in short supply too.
There are other critical materials for which Congressional action is pending.  Molybdenum-99 is used to produce technetium-99m, which is used in 30 million medical imaging procedures every year.  But the global supply of molybdenum-99 is not keeping up with the global demand.  There are no production facilities located in the United States, but legislation pending in Congress would authorize funding to establish a DOE program that supports industry and universities in the domestic production of Mo-99 using low enriched uranium.  Highly enriched uranium is exported from the US to support medical isotope production, but this is considered to be a grave global security risk.  The legislation would prohibit exports of highly enriched uranium.

Again this legislation passed the Senate in the last Congress but was not taken up in the House.  It will have to be reintroduced in the next Congress, which convenes in January 2013.  But a technical solution announced by scientists in Canada and another by a team from Los Alamos, Brookhaven and Oak Ridge national laboratories may change the landscape for this particular problem.

Another piece of legislation called the Critical Minerals Policy Act sought to revitalize US supply chain of so-called critical minerals, ranging from rare earth elements, cobalt, thorium and several others.  It was opposed by several environmental groups, and the economics of some mineral markets are attracting some private investment in American sources.

What should you do?
Urge the Senators and Representatives on the relevant committees to reintroduce the Helium Stewardship Act, the Critical Minerals Policy Act as well as legislation that authorizes and appropriates funding for Mo-99 production in the US.

#4. K-12 Education: Common Core Standards and the Next Generation Science Standards
What are the Common Core Standards Initiative and the Next Generation Science Standards?
In 2009 49 states and territories elected to join the Common Core Standards Initiative, a state-led effort to establish a shared set of clear educational standards for English language arts and mathematics.  The initiative is led jointly by the Council of Chief State School Officers and the National Governors Association.  In 2012 the ‘Common Core’ standards were augmented with the Next Generation Science Standards.

How does this affect physics?
The National Research Council released A Framework for K-12 Science Education that focused on the integration of science and engineering practices, crosscutting concepts, and disciplinary core ideas that together constitute rigorous scientific literacy for all students.  The NGSS were developed with this framework in mind.  The goal of the NGSS is to produce students with the capacity to discuss and think critically about science related issues as well asbe well prepared for college-level science courses.

Setting and adopting the Common Core and NGSS are not federal matters.  The federal government has a very small footprint in the overall initiative.  Rather the policy action on adopting these standards will at the state, school district, and maybe even the individual school levels.

What should you do?
Physicists in particular should be collaborative with K-12 teachers and help where appropriate to implement the curriculum strategies that best position students for STEM careers.  Physicist-teacher collaborations are also very necessary to ensure that the content of physical science courses cover the fundamentals but also incorporate the forefront of scientific knowledge.

#5. State Funding for Education
National Science Board signals the problem
The National Science Board, the oversight body of the National Science Foundation, recently released report on the declining support for public universities by the various governors and state legislatures.  According to the report, state support for public research universities fell 20 percent between 2002 and 2010, after accounting for inflation and increased enrollment of about 320,000 students nationally.  In the state of Colorado, the home of JILA, between 2002 and 2010 state support for public universities fell 30 percent.

Public research universities perform the majority of academic science and engineering research that is funded by the federal government, as well as train and educate a disproportionate share of science students.  But government financial support for public universities has been eroding for decades actually.

The issue is not so much the movement of the best students and faculty from public institutions and private institutions.  All institutions of higher education are federally tax-exempt organizations, thus in some sense they all are public institutions.  Rather the issue is support for the infrastructure that supports innovation, economic prosperity, national security, rational thought, liberty and freedom.

How does this impact physics?
In physics we saw the effects of declining support of higher education in Texas, Rhode Island, Tennessee and Florida where physics programs where closed.  In other states budget driven realities have meant physics departments being subsumed by large math or chemistry departments.

What should you do?
Public and private universities will have to find efficiencies and yield to greater scrutiny as they always have.  But physicists will have to stand up and remind their state governors and legislators of their value to institutions of higher education in terms of educating a science-literate populace as well as producing new knowledge and knowledge workers needed for innovation and economic growth.

#6. College Student Enrollment and Retention
Earlier this year the Presidential Council of Science and Technology Advisors released a report entitled Engage to Excel: Producing One Million Additional College Graduates with Degrees in Science, Technology, Engineering and Mathematics.

Economic projections point to a need for approximately 1 million more STEM professionals than the U.S.  will produce at the current rate over the next decade if the country is to retain its historical preeminence in science and technology.  To meet this goal, the United States will need to increase the number of students who receive undergraduate STEM degrees by about 34% annually over current rates.  Currently the United States graduates about 300,000 bachelor and associate degrees in STEM fields annually.

The problem is low retention rates for STEM students
Fewer than 40% of students who enter college intending to major in a STEM field complete a STEM degree.  Increasing the retention of STEM majors from 40% to 50% would, alone, generate three quarters of the targeted 1 million additional STEM degrees over the next decade.  The PCAST report focuses much on retention.  It proposes five “overarching recommendations to transform undergraduate STEM education during the transition from high school to college” and during the first two undergraduate years, (1) catalyze widespread adoption of empirically validated teaching practices, (2) advocate and provide support for replacing standard laboratory courses with discovery-based research courses, (3) launch a national experiment in postsecondary mathematics education to address the mathematics preparation gap, (4) encourage partnerships among stakeholders to diversify pathways to STEM careers, and (5) create a Presidential Council on STEM Education with leadership from the academic and business communities to provide strategic leadership for transformative and sustainable change in STEM undergraduate education.

How is physics impacted?
The New Physics Faculty Workshops put on by APS and AAPT were mentioned in the report for changing the participants’ teaching methods and having had positive effects on student achievement and engagement.  The report also explicitly calls for NSF to create a “STEM Institutional Transformation Awards” competitive grants program.  But the delegation that met with the Texas Board of Higher Education was confronted with student retention data in physics compared to other STEM fields, and was

This all ties together with federal budgets for STEM education and research, and to the issue of state support for public education.  The lesson from Texas in particular is that physics must do a better job of retaining students in the major or face relative extinction in the academe.

What should you do?
PCAST would say engage your students to excel.  Everyone involved in physics instruction should continually assess their teaching methods and student outcomes.  Every thing from textbooks and labs used to the social environment of the department should be on the table for improvement.


#7. Attacks on Political Science and Other Social Sciences
When science is politicized, caricatured and ridiculed we all lose
In May 2012 the US House of Representatives voted to eliminate the political science program at the National Science Foundation.  The effort was spearheaded by Arizona Republican Jeff Flake.

Congressman, now Senator, Flake was ostensibly concerned about Federal spending and wants to make the point there are some government programs that we must learn to do without.  But the concern for scientists is the approach of singling out individual projects and programs and subjecting them to ridicule only based on their titles.  This rhetorical and political device is used quite a bit, even in biomedical science.  And when it is, it diminishes science everywhere.

More recently, Representative Cantor and others have spoken out against funding social science research, targeting specifically political science research by saying that taxpayers should not fund research on “politics”.  It is important to understand the difference between political science and politics.  Political science research is necessary knowledge for citizens to enjoy the fullness of freedom.  Moreover political science research is especially a hedge against tyranny and deception by politicians.

Attacks on NSF funding of the social science are not new.  NSF funding for the social sciences was slated to be zeroed out during the Reagan administration.  One result was a spirited defense of the importance of such work by the National Science Board that appeared in its annual report provocatively titled, “Only One Science.”  The Board was then chaired by Lewis Branscomb, a distinguished physicist, who led the effort to build the case for the social sciences.

Physicists today need to channel Dr. Branscomb and be more learned and active on policy matters.  Particle physics, astronomy and cosmology are not immune from the same kind of attacks being waged against political science.   There are of course many tales of even the most esoteric results of physics research from yesterday having an profound impact in our economy today.  Generally it seems politicians judge the utility of a funded research project from the project name or maybe its brief project summary.  That in itself tends to ridicule science and scientists in ways that are quite destructive.   So all scientists should advocate for intellectual inquiry and its innate public benefits.  Golden Fleece attacks against science may focus on genetic analysis in Drosophila melanogaster one day, political dynamics in a small foreign country another day, but it could be cold atoms on an optical lattice the next.

[UPDATE] On March 20, 2013 the bill to fund the government for the rest of FY13 passed the Senate contained an amendment to bar NSF from funding political science research unless the director can certify that the research would promote “the national security or economic interests of the United States.”  The House passed the same bill the next day.  President Obama is expected to sign it.  So for the next few months at least certain political scientists may be frozen out of NSF funding.

The Colburn amendment probably could not have made it through in regular order, i.e., the normal process of budget legislating consisting of the President’s request, Congressional authorization followed by appropriation, and final action by the President.   But in a situation where time becomes a critical element, and there is “must-pass” legislation actively under consideration, these things can happen.  This underscores the need for political knowledge and information, as well as vigilant, persistent and nimble activism.

What should you do?

The bill eliminating NSF’s political science program has only passed the House.  It was never taken up in the Senate.  But in 2011 Oklahoma Senator Tom Coburn advocated for the elimination of the entire NSF Social, Behavioral and Economics Directorate.  If either measure was to become law it would have to be reintroduced in the next Congress.  Physicists should stay abreast of attacks on other intellectual disciplines, because one day those attacks will be directed at physics and astronomy research.

[Update March 27, 2013]  Political scientists suffered a setback in the continuing resolution for FY-13.  Both the House and Senate approved an amendment offered by Senator Coburn that would bar NSF from awarding any grants in political science unless the director can certify that the research would promote “the national security or economic interests of the United States.” The political science programs at NSF have a combined budget of $13 million. The legislation requires the NSF director to move the uncertified amount to other programs. President Barack Obama as signed the legislation. This kind of action against social science research is not new, but this is the first time in a long while that such a measure actually has become law.

Given the exact wording of the Coburn amendment, it is only valid until September 30, 2013, when the continuing resolution expires.  As a distinct point of lawmaking it may or may not survive the regular order of budgeting, authorizing and appropriating.

#8. Open Access to Research Literature
There is much public concern about having access to the output (manifest as journal articles) from publicly funded research.  And scientists worldwide are of course very concerned about rising journals subscription prices.

Last December the Research Works Act (RWA) was introduced in the U.S.  Congress.  The bill contains provisions to prohibit open-access mandates for federally funded research, and severely restrict the sharing of scientific data.  Had it passed it would have gutted the NIH Public Access Policy.  Many scientists considered the RWA antithetical to the principle of openness and free information flow in science.  Perhaps owing to much public outcry, the proposed legislation was abandoned by its original sponsors.

The United Kingdom and the EU have just adopted a policy where all research papers from government funded research will be open-access to the public.  To support this policy financing for journals will sourced from author payments instead of subscriber payments.  This is a major change that will require much transition in marketing, management and finance.

Open-access policy should balance the interests of the public, the practitioners of the scholarly field, as well as commercial and professional association publishers that add value to the process of communicating and archiving research results.  Scholarly publishing is a complex, dynamic and global marketplace.  It is not likely that one solution will be satisfactory for all consumers and producers (which in this marketplace are sometimes one in the same).  New business models, new communication strategies and realizations what the true demand for scholarly articles will likely be more helpful than precipitous government action.

Interview with Tony Beasley: New director of the National Radio Astronomy Observatory August 17, 2012

Posted by admin in : Astronomy and Astrophysics (ASTRO), Earth and Planetary Systems Sciences (EPSS), History, Policy and Education (HPE), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment

Last February the Associated Universities, Inc. appointed Dr. Anthony Beasley as the next NRAO director. Originally from Australia, Beasley has had a distinguished career in radio astronomy. He has played a key role in the planning and commissioning of several major instruments and facilities. In his most recent appointment his skills were used in ecological research, where those colleagues too have large networks of major scientific facilities. In a wide-ranging interview with Waves and Packets, Beasley discusses the future of NRAO and of radio astronomy in general, global collaborations like the Square Kilometer Array and VLBI, the U.S. astronomy portfolio in tough budgetary times and the promise of citizen-science in making profound discoveries.

Listen to interview

Lessons learned (so far) from the superluminal neutrino episode April 7, 2012

Posted by admin in : Astronomy and Astrophysics (ASTRO), Cosmology, Gravitation, and Relativity (CGR), Nuclear and Particle Physics (NPP) , add a comment

Reprinted from Waves and Packets, April 7,2012 edition

With the March 15 paper of the ICARUS group claiming no advance effect for their (seven) neutrino events, it seems the urgency and interest in this matter is dwindling. OPERA spokesperson Antonio Ereditato and experimental coordinator Dario Autiero have announced their resignations, following a controversial vote of “no confidence” from the collaboration’s other leaders. Waves and Packets has asked three distinguished physicists what they think the lessons learned are from the entire episode.

“It is misconception that Einstein’s special theory of relativity says that nothing can travel faster than the speed of light. For example, electrons can travel faster than the speed of light in water. This leads to a phenomena known as Cherenkov radiation which is seen as a blue glow in nuclear reactors. In addition, for a long time it’s been speculated that subatomic particles known as a tachyons might exist. Tachyons are theoretically predicted particles that travel faster than the speed of light in a vacuum and are consistent with Einstein’s theory of relativity. For ordinary subliminal particles light acts as a barrier from above. That is ordinary matter cannot be accelerated to the speed of light. For superluminal tachyons light acts as a barrier from below. That is to say that tachyons cannot be decelerated to the speed of light. It has been conjectured that tachyons could be used to send signals back in time. To date tachyons have not been observed experimentally.” Ronald Mallett, University of Connecticut-Storrs

“I think the first thing the whole episode indicates is that there is still enormous public interest in our field. The need to explore is still felt keenly so we need to be clear that announcing results, even controversial ones, should be respected by scientists if proper peer review of those results has been performed. It also points out the absolute necessity of following through on external checks. Public review of the scientific process is not a bad thing nor is showing some humility and skepticism even about ‘sacred’ principles like special relativity. Episodes like this one give us the opportunity to address misconceptions like those surrounding the connection between special relativity and the speed of light. Showing fallibility doesn’t weaken us as long as we remain appropriate demanding of ‘extraordinary proof’ for “extraordinary results.” Larry Gladney, University of Pennsylvania

“I can think of two positive remarks to be made. The first is that, given an information leak from someone familiar with the OPERA experiment to Science magazine, the OPERA Collaboration did the right thing in going public with the information they had at hand. In the spirit of good science, they nearly begged other experiments to validate or invalidate their working hypothesis of superluminal neutrinos. It now appears that invalidation was in order, as reported by the ICARUS experiment. Over the next several months, we may anticipate half a dozen experiments on three continents providing further measurements of neutrino speed; new data will also be forthcoming from the OPERA and ICARUS experiments. My second positive remark is that many of us have been pushed by the OPERA claim to examine the deeper meaning of Special and General Relativity. While paradoxes, such as superluminal travel with inherent negation of cause and effect, are mathematically consistent with Einstein’s equations, they generally are hidden behind horizons, or require invocation of new physics such as negative energy, extra dimensions, sterile neutrinos, etc. It has been fun and educational to think about the possibilities. Any opportunity to explore a guarded secret of Nature must be seized upon. It unfortunately appears now that superluminal neutrino travel may not be one of Her guarded secrets.” Thomas Weiler, Vanderbilt University

What’s your view? Contact Waves and Packets at editors@wavesandpackets.org.