jump to navigation

NSBP Member, Hakeem Oluseyi, selected to be a TEDGlobal 2012 Fellow March 31, 2012

Posted by admin in : Astronomy and Astrophysics (ASTRO), Cosmology, Gravitation, and Relativity (CGR), Earth and Planetary Systems Sciences (EPSS), History, Policy and Education (HPE), Photonics and Optics (POP), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment
Florida Institute of Technology professor, Hakeem Oluseyi, has been selected to be 2012 TED Global Fellow.  He will participate in the TED conference in Edinburgh, Scotland, June 25-29.  Dr. Oluseyi is an astrophysicist, inventor and science educator whose research focuses on measuring the structure and evolution of the Milky Way galaxy and characterizing new planetary systems.  Oluseyi has lectured widely in the US and Africa.  He was one of the founding members of the African Astronomical Society and is currently an officer of the National Society of Black Physicists.  TED is a nonprofit devoted to Ideas Worth Spreading. It started out (in 1984) as a conference bringing together people from three worlds: Technology, Entertainment, Design.  Past TED Fellows include CERN’s Bilge Demirkoz, Harvard’s Michelle Borkin, and NASA’s Lucianne Walkowicz.
 
Dr. Hakeem M. Oluseyi is an astrophysicist with research interests in the fields of solar and stellar variability, Galactic structure, and technology development.   After receiving his B.S. degrees in Physics & Mathematics from Tougaloo College in 1991, he went on earn his Ph.D. at Stanford University with an award winning dissertation, "Development of a Global Model of the Solar Atmosphere with an Emphasis on the Solar Transition Region."  His Ph.D. adviser was legendary astrophysicist, Arthur B. C.  Walker.
 
During his tenure at Stanford, Oluseyi participated in the pioneering application of normal-incidence, EUV multilayer optics to astronomical observing as a member of the Stanford team that flew the Multi-Spectral Solar Telescope Array (MSSTA) in a series of rocket flights from 1987 to 1994.  This technology has now become the standard for solar EUV imaging.  He was a major contributor to the analyses that illustrated flows in solar polar plumes for the first time and also showed for the first time that plumes were not the sources of the high-speed solar wind as was believed.  He also led the effort that discovered the structures responsible for the bulk of solar upper transition region (plasmas in the temperature range from 0.1 – 1.0 MK) emission and ultimately presented a new model for the structure of the Sun's hot atmosphere. 
 
After leaving Stanford in 1999 Dr. Oluseyi joined the technical staff at Applied Materials, Inc. where he invented several new patented processes for manufacturing next-generation, sub 0.1-micron, refractory metal transistor gate electrodes on very thin traditional and high-k dielectrics.  He also developed patented processes for in-situ spectroscopic process control and diagnostics, facilitating elimination of test wafers in semiconductor manufacturing.  This work has resulted in 7 U.S.  patents and 4 E.U.  patent.
 
In 2001 Dr. Oluseyi joined the staff of Lawrence Berkeley National Laboratory (LBNL) as an Ernest O. Lawrence Postdoctoral Fellow.  There he established a new laboratory, the CCD Production Facility, and developed new techniques for characterizing and packaging large-format, thick (300 micron), p-channel charge coupled devices (CCDs).  As a member of the SuperNova Acceleration Probe (SNAP) satellite collaboration and the Supernova Cosmology Project at LBNL, Dr. Oluseyi participated in the development of high-resistivity p-channel CCDs and performed spectroscopic observation of supernovae utilizing the Shane Spectrometer on the Lick Observatory's Nickel 3-m telescope. 
 
In January 2004 Dr. Oluseyi joined the physics faculty of The University of Alabama in Huntsville where he continued his research in solar physics, cosmology, and technology development but also focused on increasing the number of Black astrophysicists.   His efforts have thus far resulted in producing one of only two Black female solar physicists working in the U.S., mentoring a total of three African American graduate students, and six African graduate students. 
 
Oluseyi also began working extensively in Africa beginning in 2002.  He visited hundreds of schools and worked directly with thousands of students in Swaziland, South Africa, Zambia, Tanzania, and Kenya as a member of Cosmos Education in the years 2002, 2003, 2004.  In 2005 he began working with the South African Astronomical Observatory.  In 2006 he was the co-organizer of the 2006 Total Solar Eclipse Conference on Science and Culture.  Also in 2006, he co-founded a thriving Hands-On Universe branch in Nairobi, Kenya.  In subsequent years he worked with other teams dedicated to improving science research in Africa including the 2007 International Heliophysical Year conference in Addis Ababa, Ethiopia and the First Middle-East Africa, Regional IAU Meeting in Cairo, Egypt in 2008. 
 

 
Also in 2008 he began working with at-risk graduate students in the Extended Honors Program at the University of Cape Town (UCT) in collaboration with the South African Astronomical Observatory (SAAO) and the National Society of Black Physicists.  Oluseyi lectured physics and cosmology to UCT students in 2008 and 2009.  In 2010, he lectured and mentored students in the SAAO/UCT Astronomy Winter School. 
 
During 2010 and 2011, Oluseyi played a central role in establishing the African Astronomical Society (AfAS), the first continent-wide organization of African astronomy professionals.  He was a participant in the IAU-sponsored meeting of the Interim Leadership Group for forming the AfAS, and subsequently served as the Interim President of the AfAS until its official launch in April 2011. 
 
In May 2011, Oluseyi conducted a 6-city tour of South Africa as a Speaker & Specialist for the U.S. State Department.  During his visit he visited dozens of schools, museums and science centers, working with thousands of students, and a multitude of teachers, education administrators, and researchers.  In fall 2011 Oluseyi and professors at the University of Johannesburg won a grant from the U.S. State Department to found a Hands-On Universe branch in Soweto, South Africa. 
 
Oluseyi plans to return to South Africa to work with UCT students including leading observational research projects at the SAAO observatories in Sutherland.  Oluseyi also has ongoing research programs in collaboration with SAAO and University of Johannesburg scientists.
 
In January 2007 Dr. Oluseyi was invited to join the Department of Physics & Space Sciences at the Florida Institute of Technology.  He has since established a large research group that studies solar variability using space-based instruments, studies Galactic structure and stellar properties using periodic variable stars as probes, and is measuring the characteristics of extrasolar planetary systems using data from the LINEAR and KELT surveys and meter-class telescopes in North America and Chile.  He is a member of the Variables & Transients science collaboration for the Large Synoptic Survey Telescope.  Oluseyi recently founded the first observational astronomy consortium consisting primarily of minority-serving colleges and universities.
 

 
Dr. Oluseyi has won several honors including selection as a TED Global Fellow (2012), as a Speaker & Specialist for the U.S.  State Department, Outstanding Technical Innovation and Best Paper at the NSBE Aerospace Conference (2010), NASA Earth/Sun Science New Investigator fellow (2006), the 2006 Technical Achiever of the Year in Physics by the National Technical Association, selection as the Gordon & Betty Moore Foundation Astrophysics Research Fellow (2003-2005), and as an E. O. Lawrence Astrophysics Research Fellow (2001-2004), and winner of the NSBP Distinguished Dissertation award (2002).
 

 

National Alliance of Black School Educators Endorses Physics First March 16, 2012

Posted by admin in : History, Policy and Education (HPE) , 4comments

Position Statement of the National Alliance of Black School Educators
Approved by the Board of Directors, March 1, 2012

Physics is a gateway course for post-secondary study in science, medicine, and engineering, as well as an essential component in the formation of students’ scientific literacy. Physics classes hone thinking skills. An understanding of physics leads to a better understanding of other science disciplines. Physics classes help polish the skills needed to score well on the SAT and ACT. College recruiters recognize the value of taking high school physics. College success for virtually all science, computing, engineering, and premedical majors depends in part on passing physics. The job market for people with skills in physics is strong. Knowledge of physics is helpful for understanding the arts, politics, history, and culture.

Currently only 25% of Black and Hispanic high school students take any course in physics1. Thus many do not even get to the gateway. The availability of physics as a course for high school students is not equitably distributed throughout the United States. While some schools provide physics for all who wish to take it, a more common scenario, particularly for urban schools, is limited availability2. The existence of policies that restrict science opportunities for secondary students results in diminished outcomes in terms of scientific proficiency, and lack of diversity in the STEM professions.

In July 2011 the National Academy of Sciences released a framework for next generation of science standards. The framework consists of number of elements in three dimensions: (1) scientific and engineering practices, (2) crosscutting concepts, and (3) disciplinary core ideas in science. It describes how they should be developed across grades K-12, and it is designed so that students continually expand upon and improve their knowledge and abilities throughout their school years. To support learning, all three dimensions need to be integrated into standards, curricula, instruction, and assessment. The framework includes core ideas for the physical sciences, life sciences, and earth and space sciences since these are the disciplines typically included in science education in K-12 schools.

The idea of building up an integrated picture of science phenomena resonates very well with the principles of Physics First, the curricular strategy that sequences high school sciences courses beginning with physics in the 9th or 10th grade, chemistry in 10th or 11th grade, culminating with biology and earth science in the 12th; while developing proficiency in mathematics and computing in lock-step over the entire 4 years3. Physics First means more students will have the formal opportunity to learn physics and thus pass through the gateway to higher achievement and prosperity.

A first course in physics need not be overly saddled with advanced mathematics. The emphasis should be focused on conceptual understanding rather than mathematical manipulation. In fact conceptual understanding of physics need not wait until high school. Even middle school students can profit from a conceptual physics course. Conceptual understanding of physics taps into students’ natural curiosities of how and why the world works around them. That conceptual understanding is what will improve performance in later courses in other disciplines. As mathematical maturity is further developed, students can revisit the advanced mathematical expression of physics.

Given all the positive benefits, it is imperative that all students have the opportunity to formally learn physics in their secondary school settings. The National Alliance of Black School Educators (NABSE) therefore resolves:

• That all students should be afforded the opportunity to formally learn physics in their secondary school, starting no later than in the middle grades
• That Physics First, as a curricular strategy, should be implemented in all high schools
• That all NABSE members, especially those charged with STEM teaching, apprise themselves of all the issues surrounding Physics First and work collaboratively to build policy, curricula and lesson plans that will well-position our students for the 21st century.
• That NABSE will work with all our partners and fellow stakeholders to offer workshops, in-service training and in-service support that will help teachers at all stages of their careers develop, implement and teach in Physics First sequences effectively.

———————————————-
1. Compared to 41% of White students and 52% of Asian students. Source: Susan White & Casey Langer Tesfaye, Under-Represented Minorities in High School Physics: Results from the 2008-09 Nationwide Survey of High School Physics Teachers, American Institute of Physics, March 2011
2. Angela M. Kelly, Keith Sheppard, Secondary school physics availability in an urban setting: Issues related to academic achievement and course offerings, American Journal of Physics, October 2009, Volume 77, Issue 10, pp. 902
3. American Association of Physics Teachers [AAPT]. Statement on Physics First. Retrieved from http://www.aapt.org/Resources/policy/physicsfirst.cfm, 2002

IAU Office of Astronomy Development Stakeholder’s Workshop – Day 2 December 14, 2011

Posted by International.Chair in : Astronomy and Astrophysics (ASTRO), History, Policy and Education (HPE), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment

by Dr. Jarita Holbrook
Tuesday December 14, 2011

The IAU Office of Astronomy for Development (OAD) has three established task forces. Tuesday December 13th, the workshop participants were assigned to task forces and met for the morning session. The goal was to brainstorm new ideas at the intersection of astronomy and development, but also to consider how to implement the published OAD Strategic Plan.

In the afternoon we had breakout sessions by regions. The divisions were Africa and the Middle East, Latin America, Asia Pacific, North America, and Europe. In these breakout sessions we were to examine our regional strengths and regional needs. North America consisted of representatives from the United States and Canada. Mexico joined the Latin America group.

As with other places worldwide North America has underserved populations that we would like to help such as First Nations/Native Americans, underrepresented groups, inner city underclass, etc. There were two tiers of needs, the first was to do things that astronomers normally do but reach these underserved communities. That is astronomy education and astronomy outreach, there are already many programs and networks to do these but these need to be extended to these communities. The second need was to consider social justice, cultural awareness, and egalitarian science in the context of astronomy for development.

This area was a fairly new way of thinking for astronomers and specific strategies, methods, actions and activities are left for the future. Unlike other parts of the world, North America is rich in resources including in plain old cash!

There are over 300 volunteers registered through the OAD website, few of these are from North America. Thus, there is a need to recruit volunteers. The North American group did not discuss WHERE an OAD node office should be located instead we focused on the issues discussed above.

OAD Workshop Participants Silvia Torres-Peimbert (Mexico), Postdoc Linda Strubbe (USA), and Graduate Student and NSBP Member Deatrick Foster (USA)

IAU Office of Astronomy Development Stakeholders’ Workshop – Day 1 December 13, 2011

Posted by International.Chair in : Astronomy and Astrophysics (ASTRO), History, Policy and Education (HPE), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment

by Dr. Jarita Holbrook
Tuesday December 13, 2011

The first day was an opportunity for stakeholders to provide quick descriptions of their activities and how they wish to contribute to OAD or make use of OAD. Each person was to have five minutes and two slides. All of the presentations were interesting. What I found informative was the reports from the various divisions within the International Astronomical Union: IAU Commission 46: Education and Building Capacity and IAU Commission 55: Communicating Astronomy with the Public. Both of these have several working groups doing work relevant to OAD. Where the American Astronomical Society is very active regarding the direct needs of research astronomers, these two IAU commissions have been far more active socially beyond the needs of astronomers.

There were several groups focused specifically in Africa: AIMS-Next Einstein, the African Astronomical Society, South African Astronomical Observatory, and there was an artist group doing work in the town closest to the Observatory in Sutherland, South Africa.

I was given two minutes to represent the National Society of Black Physicists. I shared the following:

  • 1. The National Society of Black Physicists is a global professional society based in the United States.

    2. We are active participants in the African Astronomical Society.

    3. We are interested in international scientific collaborations.

    4. We are interested in international exchanges.

    5. We are exploring forming a regional node in the United States. We aren’t the only ones there is also Steward Observatory and the Vatican Observatory.

    6. We have a long-term investment in the development of astronomy in Africa.

    7. We offer our services to help OAD anyway we can.

  • There are three established task forces:

    1. Astronomy for Universities and Research

    2. Astronomy for Children and Schools

    3. Astronomy for the Public

    Today we will be meeting within these task force to brainstorm, keeping in mind the OAD mission: To help further the use of astronomy as a tool for development by mobilizing the human and financial resources necessary in order to realize its scientific, technological and cultural benefits to society. OAD Director Kevin Govender reminds us that astronomy is not the silver bullet to solve all the problems fo the world. We are also to consider the economic impact of our activities.

    Texas’ Decision to Close Physics Programs Jeopardizes Nation’s Future September 14, 2011

    Posted by admin in : Health Physics (HEA), History, Policy and Education (HPE), Medical Physics (MED), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment
    The Texas Higher Education Coordinating Board (THECB) has to varying degrees cut 60% of the undergraduate physics programs in State. This includes both programs at its two largest Historically Black Institutions, Texas Southern University (TSU) and Prairie View A & M University (PVAMU). Although all these institutions have the right to appeal the State’s decision, the dramatic nature of these and other actions strongly suggest that short-term politics, not good science education planning or sound economic policy, is motivating their actions.
     
    In 2009 Texas state schools produced 162 B.A./B.S. degrees in physics (and another 38 by its private schools).  But Texas produces 50% fewer B.S. physics degrees, per capita, than California.  Closing physics programs would therefore seem to be a step in the wrong direction.
     
    The State of Texas is leading the country down an abysmal path.  If all the other states were to adopt Texas’ approach, which the State of Florida is already considering, 526 of the roughly 760 physics departments in the US would be shuttered.  All but 2 of the 34 HBCU physics programs would be closed.  A third of underrepresented minorities and women studying physics would have their programs eliminated.  Physics training would be increasingly concentrated in larger elite universities with very adverse effects on the future scientific workforce.
     
    College physics programs are the incubators of content-driven K-12 physics teachers that sow the seed-corn of future Texas innovators.  Physics graduates are direct contributors to economic prosperity.  Even at the BS level a physics degree leads to high-paying jobs that fire the engines of innovation.
     
    Texas universities, including the flagship schools, have been unable to produce their fair share of African American B.S. physics graduates; producing at least 75% fewer African American baccalaureate degree recipients than they should (5 vs 20).  This number will become even worse once the physics programs at TSU and PVAMU disappear.
     
    In October 2000 the THECB adopted the “Closing the Gaps” plan with strong support from the state's educational, business and political communities. The plan is directed at closing educational gaps in Texas as well as between Texas and other states. It has four goals: to close the gaps in student participation, student success, excellence and research.  This plan with respect to physics is being betrayed by the elimination of the two physics programs at the two leading state HBCUs, particularly when one of them, TSU, has started to make significant gains in all four directions.
     
    The TSU physics program was created in 2004 through the separation of physics from the computer science department.  In 2005 its new chair was hired.  He revamped the program, replacing the old faculty with research driven faculty of national/international standing, representing some of the top universities in the world.
     
    A new curriculum, with workforce relevant physics tracks (including in health physics), was approved by the THECB in 2008. Since 2007, approximately $1,000,000 dollars was leveraged through the Office of Naval Research and the Nuclear Regulatory Commission in support of the current health physics program.  Another $1,000,000 has been raised through federally-funded, and state-supported, research grants (NSF, NASA, DOD, Welch Foundation).  On September 1, 2011, TSU won its first $5,000,000 NSF CREST Center grant.
     
    TSU Physics has the only health physics program in the greater Houston area.  Health physicists are particularly needed in a city known for its Texas Medical Center complex, one of the world’s largest collection of medical research, diagnostic, and treatment centers.  By 2012, five of TSU’s seven graduates will have pursued the health physics track.  According to salary data from the Health Physics Society, certified B.S. health physicists can expect salaries of $106,000.
     
    TSU-Physics produced its first two students in May 2010, representing 40% the total African American physics B.S. degree recipients in TX.  State records show that for each of the last six years, the overall production of B.S. degrees in Physics, awarded to Blacks, by State schools, has been no more than five (5).  In May 2010, TSU produced 40% of these, with both graduates eventually going on to graduate studies at the University of Houston (UH). One is enrolled in the Ph.D. program in environmental engineering; the other is taking graduate physics courses.  
     
    By May 2012, TSU-Physics will have produced four new B.S. graduates, two of them African American.  By May 2013 it will produce six more (five of them African American).  The State of Texas considers any undergraduate program that can produce five graduates per year as programs performing at State expectations. Thus, clearly, TSU will be in compliance within the next two years.
     
    The principal critique by the THECB for cutting TSU-Physics is that there are too many low enrollment (i.e. less than ten students) upper level classes. As part of its appeal to the THECB, TSU-Physics was prepared to join the Texas Electronic Coalition for Physics, primarily involving small physics programs within the Texas A & M University system. Programs such as that at Tarelton State University (i.e. Texas A & M – Central Texas), the lead institution within the Consortium, pool their students with the other consortium members and teach common upper level courses through videoconferencing resources.
     
    Georgia’s Atlanta University Center, comprised of Morehouse, Spelman, and Clark Atlanta University, have historically contributed to the Georgia Institute of Technology performance as one of country’s top producers of Black engineers, by feeding them well prepared African American students.  This is a model that can be realized in Texas via Texas Electronic Coalition for Physics. 
     
    However, the THECB also cut these programs. They will only allow this consortium to stay, supposedly, provided only one institution awards the B.S. Physics degree. Clearly the THECB has no appreciation of the importance of mentoring physics majors, and the importance of some sense of ownership in the physics program by students and faculty. Without formal B.S. degrees at each institution, it is difficult for departments to receive grants, etc., thus precipitating a systematic demise of any such physics effort.
     
    Altogether the THECB decision is short-sighted and abandons tax-payer investments already made.  In the case of TSU-Physics these investments have already paid off, and the program is the verge of meeting the key THECB enrollment metric.  The THECB decision jeopardizes Texas’ overall economic prosperity and African American participation in it specifically.  And if the Texas model spreads to other states, the nation’s security will surely be put at risk.
     
     

    Why does Africa need the Square Kilometre Array? August 16, 2011

    Posted by admin in : Astronomy and Astrophysics (ASTRO), Cosmology, Gravitation, and Relativity (CGR), History, Policy and Education (HPE), Technology Transfer, Business Development and Entrepreneurism (TBE) , 2comments

    2009 Address by Dr Adrian Tiplady, Manager, Site Characterization, SKA Africa Project Office

    Honourable Minister, distinguished guests, ladies and gentleman

    Why does Africa need the Square Kilometre Array? It is a question often posed by a public that is cognisant of the many high priorities that South Africa, and Africa as a whole, faces. We are currently engaged in an international race, competing to host a multi‐billion dollar, cutting edge astronomical facility that, in my view, may very well be mankind’s last great astronomical adventure still bound on earth. Do we, as South Africans, have the skills and expertise to compete within the world’s scientific community, to produce scientists and engineers of the highest calibre that will compete in the global knowledge economy? (answer at the end)

    Today, during the International Year of Astronomy, the world faces economic recession and a financial crisis like never before. Uncertainties in food, water and energy supply loom, whilst climate change has become an ever present maxim in the implementation of global policies. Africa suffers from the unrelenting scourge of preventable diseases such as Aids and malaria. Why, then, has South Africa, and Africa, announced to the international community that “we have the desire to become the international hub for astronomy”?

    In the US, President Barak Obama has committed to significantly increasing investment into science, as one of the most important parts of stimulating the economy. In his address to the US National Academy of Science, President Obama said:

    “At such a difficult moment, there are those who say we cannot afford to invest in science, that support for research is somehow a luxury at moments defined by necessities. I fundamentally disagree. Science is more important for our prosperity, our security, our health, our environment and our quality of life than ever before”.

    He went on to say:

    “The pursuit of discovery half a century ago fueled our prosperity … in the half century that followed. The commitment I am making today will fuel our success for another fifty years. That’s how we will ensure that our children and their children will look back on this generation’s work as that which defined the progress and delivered the prosperity of the 21st century. …. The fact is that an investigation into a particular physical, chemical or biological process may not pay off for a year or two, or a decade, or not at all. But when it does, the rewards are often broadly shared……..And that’s why …… the public sector must invest in this kind of research – because while the risks may be large, so are the rewards for our economy and our society. ….. It was basic research in … the photoelectric effect that would one day lead to solar panels. It was basic research in physics that would eventually produce the CAT scan. The calculations of today’s GPS satellites are based on the equations that Einstein put on paper more than a century ago”.

    Even with the wealth disparity between the USA and South Africa, science and technology on the African continent is still seen as key to our ability to solve the problems of development that will determine the future of Africa and South Africa. Investment in mega‐science facilities has never been as important as it is today, where the brain drain, ill equipped school leavers and the lack of funding for higher education facilities to pursue areas of basic research have a directly detrimental effect on our ability to participate in the global knowledge economy, where we become innovators as opposed to consumers of technology.. And to retain these people, to stem the flow of skilled people leaving these shores, we need to provide flagship projects, such as those in astronomy that places cutting edge development in a variety of scientific and engineering disciplines at its core competency.

    In 2003, the Department of Science and Technology and the National Research Foundation decided to enter into a race with four competing countries to host the world’s largest radio telescope. The Square Kilometre Array, as it is known, began as an international project in 1991, and currently involves 55 institutions across 19 countries. At a capital cost of more than $2 billion USD, the international consortium aims to have the SKA up and running by 2022, spending a further $150 million USD per year for the next 50 years in running costs. Much of this expenditure will be spent in the host country. The instrument is projected to be between 50 and 100 times more powerful than any radio astronomy facility ever built, an array of some 4,500 radio telescopes distributed over an area 3,000 km in extent. Combining the signals from each of these telescopes using a supercomputer 100 times more powerful than anything that exists today will create a virtual telescope, spanning 3000km in diameter, with a total collecting area of 1 square kilometre ‐ the equivalent of over 1,000,000 DSTV satellite dishes. This will result in an instrument with unparalleled sensitivity and resolution.

    In this International Year of Astronomy, we believe we understand just 4% of all the matter and energy in the universe. The world’s astronomical community are striving to answer some of the great fundamental questions that face the world’s scientific community, and also raise new questions ‐ not just in astronomy but indeed in fundamental physics. Instruments such as the recently launched Herschel and Planck telescopes are being put into orbit 1.5 million km away from earth, collecting the kind of data that is possible now because of technological innovations in the last 10 years. Data that could help us answer the very mysteries of the universe. Plans are afoot to venture outside of the earth, and even place telescopes onto the dark side of the moon.

    The SKA is part of this frontier of new instruments. Some of the many questions to be answered are :

    What is the nature of dark energy – a mysterious force that acts in opposition to gravity on very large distances, repelling massive objects from each other with ever increasing force?

    How did the universe and all that is contained within it evolve – radio signals have been travelling through the universe for 13 billion years, and we are only receiving some of them today as we take “pictures” of the big bang and the first stars and galaxies. We will be able to make snapshots of the universe through time.

    Mankind has long striven to answer the question of whether there is life on other planets? The detection of biomolecules, or even artificial radio transmissions, may answer this. These questions and more, however, probably do not approach the rich rewards that will come from not what we plan to investigate, but rather what we haven’t planned for. Radio telescopes today are not remembered for what they were built, but instead for what they serendipitously discovered.

    When South Africa, with a rather small human capital base in radio astronomy at the time, submitted its bid in 2005, we took the international community by surprise. Any degree of afro‐pessimism was dismissed, however, when South Africa was shortlisted along with radio astronomy international heavyweight ‐ Australia. Why? Because we have something that no amount of financial investment could ever buy. We have one of the best locations in the world to build and operate astronomical facilities, and a very committed Department of Science and Technology and National Treasury.

    The Southern African Large Telescope in Sutherland has some of the darkest skies in the world – and the proposed SKA core site, just 80km northwest of the town of Carnarvon in the Northern Cape, has one of the best radio frequency environments in the world, free from a majority of the interfering radio signals that plague most of the world’s radio astronomy facilities. Furthermore, because of our geographic location on the planet, the very best astronomical sources to observe pass right overhead – we literally have the best window on the planet out of which to gaze upon the universe, and explore the centre of the Milky Way Galaxy.

    Protection of this site is of the utmost importance – not only to protect South Africa’s geographical advantage, but to preserve the site for the world’s astronomical community. To meet this requirement, the Department of Science and Technology has promulgated the Astronomy Geographic Advantage Act, which allows for the establishment of an astronomy reserve in the Northern Cape Province. A reserve in which astronomy facilities are protected from sources of optical and radio interference.

    The Australian Minister of Science has described winning the SKA bid as being like winning the Olympic site bid every day for 50 years. If the right to host the SKA were to be awarded to South Africa, and its 7 African partner countries, we would become a premier centre for research in astronomy and fundamental physics – going hand in hand with cutting edge development in the engineering technologies that co‐exist with this field of research.

    As many of the technologies do not yet exist, to build the SKA will require a significant international effort in the fields of information and communication technology, supercomputing, mechanical, radio frequency, software and electronic engineering, physics, mathematics and, of course, astronomy. All fields that provide a basis for a strong knowledge economy. In 2004 the DST, together with the NRF, decided that simply competing to host the SKA would not meet the aims of building a knowledge economy – what was needed was a flagship project that would provide an opportunity to increase the skills base of our young scientists and engineers. We needed to participate in the technology development for the SKA, to grow a substantial base of scientists and engineers in South Africa that would be able to use, operate and maintain the SKA. And so was born the Karoo Array Telescope – an SKA science and technology pathfinder.

    MeerKAT, as it is now known, will be the first radio interferometer built for astronomical purposes in South Africa. It will consist of 80 dishes, and once completed in 2013 will be one of the world’s premier radio astronomy facilities that will have not only South Africa scientists, but the world’s astronomical community, clamouring to use – 9 years before the SKA is scheduled to be commissioned.

    Over the course of the last 5 years, we have built up a team of some 60 young scientists and engineers who are working on the technologies and algorithms required for the MeerKAT, which will in turn test the technologies for the SKA. Many of these people would have most probably left these shores already, looking for more exciting projects to work on in Silicon Valley, or other technology clusters. However, the lure and attraction of such a project as MeerKAT, and the larger SKA, has kept them here. Although none had any radio astronomy training, the team has quickly become an international leader in the development of technologies for radio astronomy facilities, which in fact are the generic technologies upon which the digital age depends, and are highly likely over many years to generate spin‐off technologies, innovations and patents. They have managed to do this through international collaboration with institutions such as Oxford, Cambridge, Manchester, Caltech, Cornell and Berkeley, as well as the national radio astronomy observatories in the USA, India, Italy and The Netherlands. We are also working closely with several South African universities and companies.

    Amongst other things, the team has developed the first every radio telescope made from composite materials, and is playing a leading role in the international development of digital hardware for real time data processing. The first 7 MeerKAT dishes are being constructed as I speak.

    In a recent editorial in the local WattNow magazine, Paddy Hartdegen says the following of the SKA and MeerKAT projects : “In my view, gee whiz projects such as the SKA and the MeerKAT go a long way to encouraging youngsters to take science and engineering disciplines more seriously. And if there is some thrill attached to science, astronomy or mathematics, then the students will apply themselves more diligently at primary and secondary schools, to ensure that they will have the necessary qualification to enter a university”. He goes on to say “I believe that projects such as the SKA can actually foster the sort of compelling interest that is reserved for sports stars and pop musicians“

    So, is Paddy Hartdegen right? Do the SKA and MeerKAT projects have the qualities that will attract students into science, engineering and technology? In 2005, we initiated a Youth into Science and Engineering program, to rapidly grow the human capital base in astronomy and engineering in South Africa. To date, we have awarded 142 post‐doctoral fellowships, PhD, masters degree, honours degree and undergraduate degree bursaries. We are currently awarding approximately 45 bursaries per year. We are assisting universities to increase their astronomy research capacity, and to develop additional capacity to supervise students through international supervisory programs. The question is, can these students stand on their own two feet within the international astronomical community?

    For the last 3 years, we have held a post‐graduate student conference for our bursary holders, where each student presents the results of his or her research. We invite a number of international experts to attend. To date, none have declined the invitation – not due to the opportunity for a holiday in Cape Town, but instead because of the astounding reputation this conference has grown internationally due to the quality of students and research. Professor Steve Rawlings, Head of Astrophysics at Oxford University, said on his departure “I am awfully impressed by what I have seen at this conference and how things have exploded on the science and engineering side on such a short timescale. South Africa is doing all the right things for the SKA”.

    So, what has the establishment of a flagship project resulted in? People. Skilled people. The new measure of financial prosperity. Skilled people who are helping to change South Africa’s reputation as a place of high technology investment, research and development. These students, who cross the race and gender lines, may never stay within the field. However, they will carry the skills they have learnt into new areas, and their impact will be felt through a variety of socio‐economic lines.

    The SKA, and the MeerKAT, has matured into a project of which we, as the South African scientific community, can be proud. It is a project that should capture the South African public’s imagination, young and old alike.

    Do we, as South Africans, have the skills and expertise to compete within the world’s scientific community, to produce scientists and engineers of the highest calibre that will compete in the global knowledge economy?

    We have in the past, and we will continue to do so. The answer, therefore, is a resounding yes.

    Morgan State University Student Spends Summer at CERN July 24, 2011

    Posted by admin in : History, Policy and Education (HPE), Nuclear and Particle Physics (NPP) , add a comment
    Eric Michael Seabron, a junior physics major and Morgan honor student with a 3.66 grade point average was selected to join an exclusive 18-member U.S. physics team for a 10-week summer internship at CERN (European Organization for Nuclear Research) in Geneva, Switzerland. 
     
    “This internship is one of the most competitive internships an undergraduate student of physics can compete for in the United States.  Mr. Seabron will benefit from this experience by expanding both his knowledge of physics and participating in the greatest scientific experiment ever proposed, the Large Hadron Collider (LHC). Participation in this internship increases his visibility as a up-and-coming young physicist, and his opportunities for getting into a Tier-1 physics graduate program with schools like Michigan, Harvard, Stanford and Princeton to name a few,” says Dr. Keith Jackson, chair of Morgan’s physics department.

    Mr. Seabron is a member of the University of Michigan’s ATLAS team sponsored by a National Science Foundation research grant for undergraduates to work on a valuable piece of equipment (Large Hadron Collider) on the ATLAS experiment. ATLAS (A Toroidal LHC ApparatuS) is one of the six particle detector experiments constructed at the LHC. He and other student colleagues will assist in the commissioning of ATLAS EE detectors, analyze event data to create R-T curves and Muon Spectrometer graphs.

    Since 2009, more than 2900 scientists and engineers from 172 institutions in 37 countries have worked on the ATLAS experiment. 

    The ATLAS experiment’s primary objective is to detect particles created after high-energy proton on proton collisions.  ATLAS will allow us to learn about the basic forces that have shaped our Universe since the beginning of time (if time has a beginning) and that will determine its fate. Research at ATLAS will provide answers to some of the most basic questions in physics such as the origin of mass, proof of existence of multiple dimensions, unification of fundamental forces, and evidence for dark matter candidates in the Universe. ATLAS brings experimental physics into new territory. Most exciting is the completely unknown surprise – new processes and particles that would change our understanding of energy and matter.
     

    “Students who are successful strive to do more than meet the minimum level of academic performance. If they take this attitude toward their undergraduate education they will find a plethora of new experiences, challenges and opportunities waiting for them, like Mr. Seabron,” says Dr. Jackson.  

     

    Eric is standing holding ladder with Michigan teammate Kareem Hegazy (on ladder) in front of 20 ft. battery cells.

    NSBP and sister societies respond to National Science Board regarding broader impacts criteria July 20, 2011

    Posted by admin in : History, Policy and Education (HPE) , add a comment

    Merit Review Task Force
    National Science Board
    Room: 1225N
    4201 Wilson Boulevard
    Arlington, Virginia 22230, USA

    Dear Merit Review Task Force,

    Thank you for the opportunity to comment on the proposed revised text for the Intellectual Merit and Broader Impacts evaluation criteria.

    Members of the National Technical Association and other minority professional organizations are very concerned about the potential negative impact of the proposed changes to the Merit Review Criteria. We are particularly, concerned about the reduced visibility to the importance of STEM diversification.

    Firstly, the proposed changes to the broader impacts text can lead one to infer that diversity is an option and not required since one of the national goals addresses it explicitly. It appears to allow PIs to choose other goals and be evaluated without addressing diversity. Diversity appears to become an option rather than central to all programs and projects and activities, as stated in the existing criteria.

    Secondly, utilizing the broad base national goals as the core principles makes it very difficult to develop a clear framework to benchmark or measure the creativity, educational impacts and potential benefits to society of the programs, projects, reviewed. Each national goal embodies a multiplicity of challenges that are interrelated and dependent on other goals. Several goals address education, while others address workforce which are essential to the development of global competitiveness, yet another goal. Measuring impact at the goal level can become problematic. It is easier to identify underlying issues/causes that should be addressed to advance national goal(s) rather than focus on the goals themselves.

    We recommend that NSF make it clear that its commitment to diversity is unchanged and indicate how diversity will be factored into the evaluation of all programs, projects and activities regardless of which national goals are addressed.

    To advance the frontier of knowledge and achieve global competitiveness, a well trained American born workforce is imperative. Given the projected population demographics, the eligible workforce will shift more to people of color who are underrepresented in STEM. It is more critical than ever that NSF support programs that address workforce development and STEM education improvements to ensure America realizes its STEM related national goals. Whereas, linking programs to national goals is important, it is crucial to first define the national problems that need to be resolved to realize national goals and support research/models that resolve these issues.

    Based on these facts, we urge the Merit Review Task Force to focus on criteria changes that identify categories of problem/ issues it will support to advance national goals and at the same time support its commitment to diversity.

    Sincerely,

    National Organization of Black Chemists and Chemical Engineers
    National Society of Black Physicists
    National Technical Association

    US SKA Consortium votes to dissolve itself in light of decadal survey and budget realities June 15, 2011

    Posted by admin in : Astronomy and Astrophysics (ASTRO), Cosmology, Gravitation, and Relativity (CGR), Earth and Planetary Systems Sciences (EPSS), History, Policy and Education (HPE) , add a comment
    At its meeting in Arlington, VA on June 7, the US Square Kilometer Array (SKA) Consortium voted to dissolve itself as of December 31, 2011.  The consortium consists of US universities and research institutes that are studying and prototyping technologies under development for the SKA

    The decision follows from the 2010 astronomy decadal survey, which did not give the SKA a positive funding recommendation.  The National Science Foundation (NSF) has decided to follow that recommendation. As a result the United States will no longer be officially part of the international SKA project.

    But this does not mean that the Americans are not participating in the overall project, in fact the US radioastronomers still remain supportive of it.  There are Americans on the engineering advisory committee.  Also the deputy director of the astronomy division at NSF, Vernon Pankonin, chairs a committee that will be making a site selection recommendation, though officials are quick to point out that his participation is not in his official capacity, and in no way implies the participation of the agency.  Pankonin's committee is set to recommend a site for the SKA, either Australia/New Zeland or Africa, in February 2012. 

    The National Society of Black Physicists (NSBP) has been supportive of the African bid, including participation in the recent workshop on the SKA and human capacity development. Later this year, NSBP plans to launch the US-Africa Astronomy and Space Sciences Institute.

    NSBP member, Eric Wilcots, also a member of the US SKA Consortium, feels that the dissolution decision will have little immediate impact on the international project.  "The large part of the US financial involvement was only to materialize in the next decade.  India, China and Canada have joined the effort since the time of the original planning.  Whether or not these countries will participate financially in this decade to the extent that was envisioned for the US is unknown at this point."

    Charles McGruder, also an NSBP and US SKA Consortium member, agrees.  "The SKA is conceived to come together in phases.  Phase 1 will likely proceed in this decade even if the US is not an official participant.  Phase 1 includes epoch of reionization and NANOGRAF (pulsar timing) experiments, which did get postive funding recommendations in the decadal survey."
     
    "Individual American astronomers will undoubtedly stay involved with the SKA through these research projects," adds NRAO's Ken Kellermann, a past chair of the International SKA Science and Engineering Committee.

    This bodes well for the South African effort, Wilcots points out.  The South Africa MeerKAT is much better suited for pulsar timing studies than the Australian ASKAP.   The PAPER experiment was recently deployed in South Africa eventhough it was originally planned to be located in Australia.  Also a US team intending to work with the Murchison Widefield Array, which is under construction in Australia, was recently informed by NSF of the agency's declination of their funding proposal.

    There are efforts to find other sources of funding, public and private, to support the US involvement in the SKA project.  There are intersections between US policy towards the SKA, broader American foreign policy interests, and interest in the diversity of the global scientific workforce.  Some Members of Congress have become interested in the SKA as a mechanism for increased trade with Africa.  Whether or not this leads to an administrative policy directive or congressionally mandated spending remains to be seen.  

    Southern Africa’s SKA Bid: A Worthwhile Investment June 14, 2011

    Posted by admin in : Astronomy and Astrophysics (ASTRO), History, Policy and Education (HPE), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment

    By Congressman Bobby Rush

    Southern Africa is quickly establishing itself as a hub for astronomy, scientific expertise and in doing so, is creating an unrivalled opportunity for the development of skills and expertise that will allow Africa and its people to be significant contributors to the global knowledge economy.

    In 2012, a consortium of major international science funding agencies will select a location to house the world’s most powerful radio telescope, The Square Kilometre Array (SKA). The SKA promises to revolutionize science by answering some of the most fundamental questions that remain about the origin, nature and evolution of the universe. With about 3 000 receptors linked together and a total collecting area of one square kilometre, the SKA will have 50 times the sensitivity and 10,000 times the survey speed of the best current-day radio telescopes. The SKA will enable scientists to gain insight into the origins of the universe and provide answers to fundamental questions in astronomy and physics.

    Currently, two locations are under consideration: Africa, under the leadership of South Africa, and Australia/New Zealand, under the leadership of Australia. South Africa’s SKA bid proposes that the core of the telescope be located in the Northern Cape Province, with additional antenna stations in Namibia, Botswana, Kenya, Mozambique, Madagascar, Mauritius, Ghana and Zambia.

    South Africa has already demonstrated its excellent science and engineering skills by designing and starting to build the MeerKAT telescope, an SKA precursor telescope. Five years before MeerKAT becomes operational, more than 43,000 hours of observing time have already been allocated to radio astronomers from Africa and around the world, who have applied for time to do research with this unique and world-leading instrument. US astronomers are leading some of these research teams.

    There is already active collaboration between the South Africans and UC Berkeley, the National Radio Astronomy Observatory and Caltech on the PAPER and CBASS telescopes respectively, which are currently hosted on the South African radio astronomy reserve. Collaboration is also taking place between these US research institutions and the MeerKAT team on the development of technologies for the MeerKAT and US telescopes.

    The SKA in Southern Africa represents an unrivalled opportunity to transform Africa through science and technology by driving the world’s best and brightest to the region, and providing the continent’s youth with a world-class incentive to study science and provide the world answers to the planet’s oldest questions.

    The SKA in Southern Africa will create a critical mass of young people in Africa with world-class expertise in technologies that will be paramount in the global economy in the coming years. New technologies, scientific discoveries and infrastructure development taking place in Africa will contribute to the creation of entirely new industries and spur development in many fields of human endeavor, while transforming Africa as a major hub for science in the world and creating a new continent of opportunity for American business to cultivate and develop partnerships throughout Africa.

    The construction of major science infrastructure in Southern Africa, such as the $2 billion SKA project, will also represents an important opportunity for U.S. business to cultivate and develop partnerships in the region that can lead to new technologies, new industries and economic development both here in the USA and throughout Africa.

    The SKA represents a unique opportunity to accelerate the development of skills and expertise that will allow Africa and its people to be significant contributors to the global knowledge economy. We should support southern Africa in its quest to become contributors to global science and equal partners in the knowledge economy.

    Bobby Rush is the U.S. Representative for Illinois’s 1st congressional district, serving since 1993. He is a member of the Democratic Party. A long-time advocate of increased trade with Africa, he has introduced H.R. 656, the African Investment and Diaspora Act, to advance the mutual interests of the United States and Africa with respect to the promotion of trade and investment and the advancement of socioeconomic development and opportunity.