jump to navigation

8 Policy Issues that Every Physicist Should Follow October 5, 2012

Posted by admin in : Astronomy and Astrophysics (ASTRO), Atomic, Molecular and Optical Physics (AMO), Chemical and Biological Physics (CBP), Condensed Matter and Materials Physics (CMMP), Earth and Planetary Systems Sciences (EPSS), History, Policy and Education (HPE), Medical Physics (MED), Nuclear and Particle Physics (NPP), Photonics and Optics (POP), Physics Education Research (PER), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment

#1. Federal Science Budget and Sequestration
The issue of funding for science is always with us.  With few exceptions everyone seems to agree that investment in science, technology and innovation is fundamentally necessary for America’s national and economic security.  Successive Administrations and Congresses have rhetorically praised science, and have declared that federal science agencies, particular NSF, DOE Office of Science and NIH should see their respective budgets doubled.  Where the rhetoric has met with action in the last decade, recent flat-lined budget increases, and the projections for the next decade erode these increases in real terms, and in fact in the next few years the federal R&D budget could regress back to 2002 levels and in several cases to historic lows in terms of real spending power.

What is sequestration?
Last year Congress passed the Budget Control Act with the goal of cutting federal spending by $1.2T relative to the Congressional Budget Office baseline from 2010 over 10 years.  The broad policy issues in the Budget Control Act follow from the fact that the total amount and the rate of growth of the federal public debt is on an unsustainable path.  The Budget Control Act would only reduce the rate of growth but not reduce the debt itself.  The basic choices are to increase taxes and/or to decrease spending.

The Budget Control Act also established the Joint Select Committee on Deficit Reduction, which was to produce a plan to reach the goal.  If the committee did not agree on a plan, the legislation provided for large, automatic – starting in January 2013 (already one quarter through FY13), across-the-board cuts to federal spending.  This is called sequestration.  The committee could not come to an agreement, and as a result the federal government faces what has been termed a ‘fiscal cliff’ where simultaneously several tax provisions will expire (resulting in tax increases) in addition to the sharp spending cuts.  This will most certainly plunge the economy into a recession.

Sequestration would require at least 8% budget cuts immediately in FY13 (the current year).  In the political lexicon on this topic federal spending is divided into defense and non-defense.  The current formula would put somewhat slightly more of the cuts on non-defense programs, but there is talk of putting all burden of sequestration on non-defense programs.  If the burden is borne only by non-defense programs, some agencies could lose as much as 17%.

It is important to emphasize that these would be immediate cuts starting with FY13 budgets, so a $100K grant for this year would suddenly become $92K, or possibly $83K.  Then from the sequestration budgets, the Budget Control Act would require flat budgets for the subsequent 5 years.  While it would generally be up to the agencies to figure out how to distribute the immediate cuts, it is instructive to see how the cuts would impact agencies that are important overall to physics and astronomy research.

How does it impact physics?
The R&D Budget and Policy Program at AAAS has done a masterful job at analyzing sequestration and its impact on science agencies. The cases of DOD and NIH provide some general indications of the effects of sequestration.  DOD is the single largest supporter of R&D amongst the federal agencies, and NIH is the second largest.  Under sequestration they would lose $7B and $2.5B, respectively.  Inside the DOD number is funding for basic and applied science, including DARPA programs.  These accounts would lose a combined $1.5B.  But there is an important dichotomy between DOD and NIH.  IF the Congress and Administration decide to apply the cuts only to non-defense programs, the cuts at NIH would have to be deeper (to meet the overall targets), while the cuts at DOD would remain unchanged.

At NSF, if the cuts are applied truly across the board, $500M would immediately be eliminated from the agency’s FY13 budget.  In a scenario where the cuts are applied only to non-defense spending the NSF cuts could be just over $1B.  It would be as if the NSF budget had regressed back to 2002 levels, basically wiping out a decade of growth.  To further put these cuts into context, NSF’s total FY13 budget request for research and related activities is $5.7B, including $1.345B for the entire Math and Physical Sciences Directorate.  One billion dollars is what the agency spends on major equipment and facilities construction and on education and human resources combined.  It is by far larger than the Faculty Early Career Development and the Graduate Research Fellowship programs.  And put one last way, the cuts would mean at least 2500 fewer grants awarded.

Under the sequestration scenario where defense and non-defense program bear the brunt of cuts equally, the DOE Office of Science could lose $362M immediately in FY13, while NNSA which funds Lawrence Livermore, Los Alamos, and Sandia national labs, would lose at least $300M.  Again these cuts would be deeper if the Congress votes, and the President agrees to subject the cuts only to non-defense programs.  The Office of Science cut is nearly equivalent to the requested FY13 budget for fusion energy research ($398M).  The Office of Science had enjoyed a fair level of support in the past decade, but sequestration would take the agency back to FY08 spending levels or to FY00 if the cuts are applied to non-defense programs only.

NASA would immediately lose at least $763M with the Science Directorate losing nearly $250M.  Again these cuts would be much deeper if distributed only to non-defense programs.  In that scenario NASA would immediately lose $1.7B in FY13, more than the FY13 budget for James Webb Space Telescope ($627M) or the Astrophysics Division ($659M).

What should you do?
In summary, the overall objective of the Budget Control Act is to reduce the federal deficit by $1.2T over the next decade.  This would slow the rate of increase of the overall federal debt.  The Act was resolution of political gamesmanship over raising debt ceiling, which has to be increased from time to time to authorize the federal government to make outlays encumbered in part by prior year obligations.  The sticky issue was taxes.  The GOP, which generally desires more spending cuts than Democrats, was not willing to agree to anything that involved a tax increase.

Besides wanting to preserve more investments in discretionary programs, President Obama was not willing to push too hard on increasing taxes given the weak economy, and probably wanting to avoid the adverse politics of increasing taxes before the election.  Subsequently because the Congress could not agree on a way to produce $1.2T in deficit reduction over 10 years, the law requires sequestration of FY13 budgets, i.e., immediate and draconian cuts (8-17%), the mechanics of which would have serious adverse effects to the entire US economy.

Both before the election and after you should contact the President, your Senators and Representative, and urge them act urgently to steer the federal government away from sequestration and the fiscal cliff.


#2. Timeliness of Appropriations
What is the issue?
The US Constitution requires that “No money shall be drawn from the treasury, but in consequence of appropriations made by law.” Each year the federal budget process begins on the first Tuesday in February when the President sends the Administration’s budget request to Congress.  In a two-step process Congress authorizes programs and top-line budgets; then it specifically appropriates spending authority to the Administration for those programs.  The federal fiscal year begins on October 1st, and when Congress does not complete their two-step process, operations of the federal government are held in limbo.  Essentially the government is not authorized to spend money.  This is overcome by passing “continuing resolutions” that basically continue the government’s programs at the prior year programmatic and obligating authorities.

How does it affect physics?
Continuing resolutions wreak havoc for the Administration, i.e, for funding agencies, and consequently for federal science programs.  They prevent new programs from coming online and the planned shutdown of programs.  Because federal program directors cannot know what their final obligating authority will ultimately be, they have to be very careful with how much they spend.  The consequences of over-spending obligating authority are unpleasant.  Keeping a science program going under the uncertainty of the continuing resolution is hard, and in some cases impossible.

What should you do?
Physicists would be well advised to tune into the status of appropriations for agencies from which they get funding, plan accordingly, and use their voices to pressure Congress to finish the appropriations process by October 1st.

#3. Availability of Critical Materials: Helium, Mo-99 and Minerals
Helium shortage?
Helium is not only an inordinately important substance in physics research, but also in several other industrial and consumer marketplaces.  But despite its natural abundance, it is difficult to make helium available and usable at a reasonable cost.  Usable helium supplies are actually dwindling at a troubling rate, and price fluctuations are having very undesirable effects in scientific research and other sectors.

Most usable helium is produced as a by-product in natural gas production.  Gas fields in the United States have a higher concentration of helium than those found in other countries.  Those facts, combined with decades of recognition of helium’s value to military and space operations, scientific research and industrial processes, Congress enacted legislation to create the Federal Helium Program, which has the largest reserve of available helium in the world.

Enter the policy issues.  In an effort to downsize the government in 1996, Congress enacted legislation to eliminate the helium reserve by 2015 and to privatize helium production.  But the pricing structure required by the 1996 legislation led to price suppression, and thus private companies have been slow to come into the industry as producers, even as demand has been steadily increasing.  So with the federal government’s looming exit from helium production, it does not seem that there is another entity with the capacity to meet the growing demand of helium at a reasonable price.  The few other sources of usable helium available from other countries have nowhere near the US government’s production capacity.

To address this problem Senator Bingaman of New Mexico introduced the Helium Stewardship Act of 2012.  This is a bipartisan bill sponsored by two Democratic and two Republican Senators.  This legislation would authorize operation of the Federal Helium Program beyond 2015.  It would maintain a roughly 15-year supply for federal users, including the holders of research grants.  This should guarantee federal users, including research grant holders, a supply of helium until about 2030.  It would also set conditions for private corporations to more easily enter the helium production business.

But since no action was taken in this Congress, it will have to be reintroduced in January 2013 when the new Congress convenes, and it will have to be taken up in the House after being passed in the Senate.

[Update] On March 20, 2013 the House Natural Resources Committee unanimously approved legislation that would significantly reform how one-half of the nation’s domestic helium supply is managed and sold. H.R. 527, the Responsible Helium Administration and Stewardship Act would maintain the reserve’s operation, require semi-annual helium auctions, and provide access to pipeline infrastructure for pre-approved bidders, in addition to other provisions on matters such as refining and minimum pricing. The bill now moves to the House floor. On the Senate side, Senators Wyden and Murkowski have released a draft of their legislation addressing this issue.

Mo-99 is in short supply too.
There are other critical materials for which Congressional action is pending.  Molybdenum-99 is used to produce technetium-99m, which is used in 30 million medical imaging procedures every year.  But the global supply of molybdenum-99 is not keeping up with the global demand.  There are no production facilities located in the United States, but legislation pending in Congress would authorize funding to establish a DOE program that supports industry and universities in the domestic production of Mo-99 using low enriched uranium.  Highly enriched uranium is exported from the US to support medical isotope production, but this is considered to be a grave global security risk.  The legislation would prohibit exports of highly enriched uranium.

Again this legislation passed the Senate in the last Congress but was not taken up in the House.  It will have to be reintroduced in the next Congress, which convenes in January 2013.  But a technical solution announced by scientists in Canada and another by a team from Los Alamos, Brookhaven and Oak Ridge national laboratories may change the landscape for this particular problem.

Another piece of legislation called the Critical Minerals Policy Act sought to revitalize US supply chain of so-called critical minerals, ranging from rare earth elements, cobalt, thorium and several others.  It was opposed by several environmental groups, and the economics of some mineral markets are attracting some private investment in American sources.

What should you do?
Urge the Senators and Representatives on the relevant committees to reintroduce the Helium Stewardship Act, the Critical Minerals Policy Act as well as legislation that authorizes and appropriates funding for Mo-99 production in the US.

#4. K-12 Education: Common Core Standards and the Next Generation Science Standards
What are the Common Core Standards Initiative and the Next Generation Science Standards?
In 2009 49 states and territories elected to join the Common Core Standards Initiative, a state-led effort to establish a shared set of clear educational standards for English language arts and mathematics.  The initiative is led jointly by the Council of Chief State School Officers and the National Governors Association.  In 2012 the ‘Common Core’ standards were augmented with the Next Generation Science Standards.

How does this affect physics?
The National Research Council released A Framework for K-12 Science Education that focused on the integration of science and engineering practices, crosscutting concepts, and disciplinary core ideas that together constitute rigorous scientific literacy for all students.  The NGSS were developed with this framework in mind.  The goal of the NGSS is to produce students with the capacity to discuss and think critically about science related issues as well asbe well prepared for college-level science courses.

Setting and adopting the Common Core and NGSS are not federal matters.  The federal government has a very small footprint in the overall initiative.  Rather the policy action on adopting these standards will at the state, school district, and maybe even the individual school levels.

What should you do?
Physicists in particular should be collaborative with K-12 teachers and help where appropriate to implement the curriculum strategies that best position students for STEM careers.  Physicist-teacher collaborations are also very necessary to ensure that the content of physical science courses cover the fundamentals but also incorporate the forefront of scientific knowledge.

#5. State Funding for Education
National Science Board signals the problem
The National Science Board, the oversight body of the National Science Foundation, recently released report on the declining support for public universities by the various governors and state legislatures.  According to the report, state support for public research universities fell 20 percent between 2002 and 2010, after accounting for inflation and increased enrollment of about 320,000 students nationally.  In the state of Colorado, the home of JILA, between 2002 and 2010 state support for public universities fell 30 percent.

Public research universities perform the majority of academic science and engineering research that is funded by the federal government, as well as train and educate a disproportionate share of science students.  But government financial support for public universities has been eroding for decades actually.

The issue is not so much the movement of the best students and faculty from public institutions and private institutions.  All institutions of higher education are federally tax-exempt organizations, thus in some sense they all are public institutions.  Rather the issue is support for the infrastructure that supports innovation, economic prosperity, national security, rational thought, liberty and freedom.

How does this impact physics?
In physics we saw the effects of declining support of higher education in Texas, Rhode Island, Tennessee and Florida where physics programs where closed.  In other states budget driven realities have meant physics departments being subsumed by large math or chemistry departments.

What should you do?
Public and private universities will have to find efficiencies and yield to greater scrutiny as they always have.  But physicists will have to stand up and remind their state governors and legislators of their value to institutions of higher education in terms of educating a science-literate populace as well as producing new knowledge and knowledge workers needed for innovation and economic growth.

#6. College Student Enrollment and Retention
Earlier this year the Presidential Council of Science and Technology Advisors released a report entitled Engage to Excel: Producing One Million Additional College Graduates with Degrees in Science, Technology, Engineering and Mathematics.

Economic projections point to a need for approximately 1 million more STEM professionals than the U.S.  will produce at the current rate over the next decade if the country is to retain its historical preeminence in science and technology.  To meet this goal, the United States will need to increase the number of students who receive undergraduate STEM degrees by about 34% annually over current rates.  Currently the United States graduates about 300,000 bachelor and associate degrees in STEM fields annually.

The problem is low retention rates for STEM students
Fewer than 40% of students who enter college intending to major in a STEM field complete a STEM degree.  Increasing the retention of STEM majors from 40% to 50% would, alone, generate three quarters of the targeted 1 million additional STEM degrees over the next decade.  The PCAST report focuses much on retention.  It proposes five “overarching recommendations to transform undergraduate STEM education during the transition from high school to college” and during the first two undergraduate years, (1) catalyze widespread adoption of empirically validated teaching practices, (2) advocate and provide support for replacing standard laboratory courses with discovery-based research courses, (3) launch a national experiment in postsecondary mathematics education to address the mathematics preparation gap, (4) encourage partnerships among stakeholders to diversify pathways to STEM careers, and (5) create a Presidential Council on STEM Education with leadership from the academic and business communities to provide strategic leadership for transformative and sustainable change in STEM undergraduate education.

How is physics impacted?
The New Physics Faculty Workshops put on by APS and AAPT were mentioned in the report for changing the participants’ teaching methods and having had positive effects on student achievement and engagement.  The report also explicitly calls for NSF to create a “STEM Institutional Transformation Awards” competitive grants program.  But the delegation that met with the Texas Board of Higher Education was confronted with student retention data in physics compared to other STEM fields, and was

This all ties together with federal budgets for STEM education and research, and to the issue of state support for public education.  The lesson from Texas in particular is that physics must do a better job of retaining students in the major or face relative extinction in the academe.

What should you do?
PCAST would say engage your students to excel.  Everyone involved in physics instruction should continually assess their teaching methods and student outcomes.  Every thing from textbooks and labs used to the social environment of the department should be on the table for improvement.


#7. Attacks on Political Science and Other Social Sciences
When science is politicized, caricatured and ridiculed we all lose
In May 2012 the US House of Representatives voted to eliminate the political science program at the National Science Foundation.  The effort was spearheaded by Arizona Republican Jeff Flake.

Congressman, now Senator, Flake was ostensibly concerned about Federal spending and wants to make the point there are some government programs that we must learn to do without.  But the concern for scientists is the approach of singling out individual projects and programs and subjecting them to ridicule only based on their titles.  This rhetorical and political device is used quite a bit, even in biomedical science.  And when it is, it diminishes science everywhere.

More recently, Representative Cantor and others have spoken out against funding social science research, targeting specifically political science research by saying that taxpayers should not fund research on “politics”.  It is important to understand the difference between political science and politics.  Political science research is necessary knowledge for citizens to enjoy the fullness of freedom.  Moreover political science research is especially a hedge against tyranny and deception by politicians.

Attacks on NSF funding of the social science are not new.  NSF funding for the social sciences was slated to be zeroed out during the Reagan administration.  One result was a spirited defense of the importance of such work by the National Science Board that appeared in its annual report provocatively titled, “Only One Science.”  The Board was then chaired by Lewis Branscomb, a distinguished physicist, who led the effort to build the case for the social sciences.

Physicists today need to channel Dr. Branscomb and be more learned and active on policy matters.  Particle physics, astronomy and cosmology are not immune from the same kind of attacks being waged against political science.   There are of course many tales of even the most esoteric results of physics research from yesterday having an profound impact in our economy today.  Generally it seems politicians judge the utility of a funded research project from the project name or maybe its brief project summary.  That in itself tends to ridicule science and scientists in ways that are quite destructive.   So all scientists should advocate for intellectual inquiry and its innate public benefits.  Golden Fleece attacks against science may focus on genetic analysis in Drosophila melanogaster one day, political dynamics in a small foreign country another day, but it could be cold atoms on an optical lattice the next.

[UPDATE] On March 20, 2013 the bill to fund the government for the rest of FY13 passed the Senate contained an amendment to bar NSF from funding political science research unless the director can certify that the research would promote “the national security or economic interests of the United States.”  The House passed the same bill the next day.  President Obama is expected to sign it.  So for the next few months at least certain political scientists may be frozen out of NSF funding.

The Colburn amendment probably could not have made it through in regular order, i.e., the normal process of budget legislating consisting of the President’s request, Congressional authorization followed by appropriation, and final action by the President.   But in a situation where time becomes a critical element, and there is “must-pass” legislation actively under consideration, these things can happen.  This underscores the need for political knowledge and information, as well as vigilant, persistent and nimble activism.

What should you do?

The bill eliminating NSF’s political science program has only passed the House.  It was never taken up in the Senate.  But in 2011 Oklahoma Senator Tom Coburn advocated for the elimination of the entire NSF Social, Behavioral and Economics Directorate.  If either measure was to become law it would have to be reintroduced in the next Congress.  Physicists should stay abreast of attacks on other intellectual disciplines, because one day those attacks will be directed at physics and astronomy research.

[Update March 27, 2013]  Political scientists suffered a setback in the continuing resolution for FY-13.  Both the House and Senate approved an amendment offered by Senator Coburn that would bar NSF from awarding any grants in political science unless the director can certify that the research would promote “the national security or economic interests of the United States.” The political science programs at NSF have a combined budget of $13 million. The legislation requires the NSF director to move the uncertified amount to other programs. President Barack Obama as signed the legislation. This kind of action against social science research is not new, but this is the first time in a long while that such a measure actually has become law.

Given the exact wording of the Coburn amendment, it is only valid until September 30, 2013, when the continuing resolution expires.  As a distinct point of lawmaking it may or may not survive the regular order of budgeting, authorizing and appropriating.

#8. Open Access to Research Literature
There is much public concern about having access to the output (manifest as journal articles) from publicly funded research.  And scientists worldwide are of course very concerned about rising journals subscription prices.

Last December the Research Works Act (RWA) was introduced in the U.S.  Congress.  The bill contains provisions to prohibit open-access mandates for federally funded research, and severely restrict the sharing of scientific data.  Had it passed it would have gutted the NIH Public Access Policy.  Many scientists considered the RWA antithetical to the principle of openness and free information flow in science.  Perhaps owing to much public outcry, the proposed legislation was abandoned by its original sponsors.

The United Kingdom and the EU have just adopted a policy where all research papers from government funded research will be open-access to the public.  To support this policy financing for journals will sourced from author payments instead of subscriber payments.  This is a major change that will require much transition in marketing, management and finance.

Open-access policy should balance the interests of the public, the practitioners of the scholarly field, as well as commercial and professional association publishers that add value to the process of communicating and archiving research results.  Scholarly publishing is a complex, dynamic and global marketplace.  It is not likely that one solution will be satisfactory for all consumers and producers (which in this marketplace are sometimes one in the same).  New business models, new communication strategies and realizations what the true demand for scholarly articles will likely be more helpful than precipitous government action.

NSBP Member, Hakeem Oluseyi, selected to be a TEDGlobal 2012 Fellow March 31, 2012

Posted by admin in : Astronomy and Astrophysics (ASTRO), Cosmology, Gravitation, and Relativity (CGR), Earth and Planetary Systems Sciences (EPSS), History, Policy and Education (HPE), Photonics and Optics (POP), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment
Florida Institute of Technology professor, Hakeem Oluseyi, has been selected to be 2012 TED Global Fellow.  He will participate in the TED conference in Edinburgh, Scotland, June 25-29.  Dr. Oluseyi is an astrophysicist, inventor and science educator whose research focuses on measuring the structure and evolution of the Milky Way galaxy and characterizing new planetary systems.  Oluseyi has lectured widely in the US and Africa.  He was one of the founding members of the African Astronomical Society and is currently an officer of the National Society of Black Physicists.  TED is a nonprofit devoted to Ideas Worth Spreading. It started out (in 1984) as a conference bringing together people from three worlds: Technology, Entertainment, Design.  Past TED Fellows include CERN’s Bilge Demirkoz, Harvard’s Michelle Borkin, and NASA’s Lucianne Walkowicz.
 
Dr. Hakeem M. Oluseyi is an astrophysicist with research interests in the fields of solar and stellar variability, Galactic structure, and technology development.   After receiving his B.S. degrees in Physics & Mathematics from Tougaloo College in 1991, he went on earn his Ph.D. at Stanford University with an award winning dissertation, "Development of a Global Model of the Solar Atmosphere with an Emphasis on the Solar Transition Region."  His Ph.D. adviser was legendary astrophysicist, Arthur B. C.  Walker.
 
During his tenure at Stanford, Oluseyi participated in the pioneering application of normal-incidence, EUV multilayer optics to astronomical observing as a member of the Stanford team that flew the Multi-Spectral Solar Telescope Array (MSSTA) in a series of rocket flights from 1987 to 1994.  This technology has now become the standard for solar EUV imaging.  He was a major contributor to the analyses that illustrated flows in solar polar plumes for the first time and also showed for the first time that plumes were not the sources of the high-speed solar wind as was believed.  He also led the effort that discovered the structures responsible for the bulk of solar upper transition region (plasmas in the temperature range from 0.1 – 1.0 MK) emission and ultimately presented a new model for the structure of the Sun's hot atmosphere. 
 
After leaving Stanford in 1999 Dr. Oluseyi joined the technical staff at Applied Materials, Inc. where he invented several new patented processes for manufacturing next-generation, sub 0.1-micron, refractory metal transistor gate electrodes on very thin traditional and high-k dielectrics.  He also developed patented processes for in-situ spectroscopic process control and diagnostics, facilitating elimination of test wafers in semiconductor manufacturing.  This work has resulted in 7 U.S.  patents and 4 E.U.  patent.
 
In 2001 Dr. Oluseyi joined the staff of Lawrence Berkeley National Laboratory (LBNL) as an Ernest O. Lawrence Postdoctoral Fellow.  There he established a new laboratory, the CCD Production Facility, and developed new techniques for characterizing and packaging large-format, thick (300 micron), p-channel charge coupled devices (CCDs).  As a member of the SuperNova Acceleration Probe (SNAP) satellite collaboration and the Supernova Cosmology Project at LBNL, Dr. Oluseyi participated in the development of high-resistivity p-channel CCDs and performed spectroscopic observation of supernovae utilizing the Shane Spectrometer on the Lick Observatory's Nickel 3-m telescope. 
 
In January 2004 Dr. Oluseyi joined the physics faculty of The University of Alabama in Huntsville where he continued his research in solar physics, cosmology, and technology development but also focused on increasing the number of Black astrophysicists.   His efforts have thus far resulted in producing one of only two Black female solar physicists working in the U.S., mentoring a total of three African American graduate students, and six African graduate students. 
 
Oluseyi also began working extensively in Africa beginning in 2002.  He visited hundreds of schools and worked directly with thousands of students in Swaziland, South Africa, Zambia, Tanzania, and Kenya as a member of Cosmos Education in the years 2002, 2003, 2004.  In 2005 he began working with the South African Astronomical Observatory.  In 2006 he was the co-organizer of the 2006 Total Solar Eclipse Conference on Science and Culture.  Also in 2006, he co-founded a thriving Hands-On Universe branch in Nairobi, Kenya.  In subsequent years he worked with other teams dedicated to improving science research in Africa including the 2007 International Heliophysical Year conference in Addis Ababa, Ethiopia and the First Middle-East Africa, Regional IAU Meeting in Cairo, Egypt in 2008. 
 

 
Also in 2008 he began working with at-risk graduate students in the Extended Honors Program at the University of Cape Town (UCT) in collaboration with the South African Astronomical Observatory (SAAO) and the National Society of Black Physicists.  Oluseyi lectured physics and cosmology to UCT students in 2008 and 2009.  In 2010, he lectured and mentored students in the SAAO/UCT Astronomy Winter School. 
 
During 2010 and 2011, Oluseyi played a central role in establishing the African Astronomical Society (AfAS), the first continent-wide organization of African astronomy professionals.  He was a participant in the IAU-sponsored meeting of the Interim Leadership Group for forming the AfAS, and subsequently served as the Interim President of the AfAS until its official launch in April 2011. 
 
In May 2011, Oluseyi conducted a 6-city tour of South Africa as a Speaker & Specialist for the U.S. State Department.  During his visit he visited dozens of schools, museums and science centers, working with thousands of students, and a multitude of teachers, education administrators, and researchers.  In fall 2011 Oluseyi and professors at the University of Johannesburg won a grant from the U.S. State Department to found a Hands-On Universe branch in Soweto, South Africa. 
 
Oluseyi plans to return to South Africa to work with UCT students including leading observational research projects at the SAAO observatories in Sutherland.  Oluseyi also has ongoing research programs in collaboration with SAAO and University of Johannesburg scientists.
 
In January 2007 Dr. Oluseyi was invited to join the Department of Physics & Space Sciences at the Florida Institute of Technology.  He has since established a large research group that studies solar variability using space-based instruments, studies Galactic structure and stellar properties using periodic variable stars as probes, and is measuring the characteristics of extrasolar planetary systems using data from the LINEAR and KELT surveys and meter-class telescopes in North America and Chile.  He is a member of the Variables & Transients science collaboration for the Large Synoptic Survey Telescope.  Oluseyi recently founded the first observational astronomy consortium consisting primarily of minority-serving colleges and universities.
 

 
Dr. Oluseyi has won several honors including selection as a TED Global Fellow (2012), as a Speaker & Specialist for the U.S.  State Department, Outstanding Technical Innovation and Best Paper at the NSBE Aerospace Conference (2010), NASA Earth/Sun Science New Investigator fellow (2006), the 2006 Technical Achiever of the Year in Physics by the National Technical Association, selection as the Gordon & Betty Moore Foundation Astrophysics Research Fellow (2003-2005), and as an E. O. Lawrence Astrophysics Research Fellow (2001-2004), and winner of the NSBP Distinguished Dissertation award (2002).
 

 

Industrial Masters and Internship Program at University of Oregon February 26, 2011

Posted by admin in : Chemical and Biological Physics (CBP), Condensed Matter and Materials Physics (CMMP), History, Policy and Education (HPE), Photonics and Optics (POP), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment

You can earn a Masters degree and a salary one year through the University of Oregon’s Masters Industrial Internship Program. This program provides students with the real-world knowledge and skills necessary to be successful in an industrial environment.

The best way to judge the success of the Industrial Masters Program may be its history and its list of corporate partners. Over the last 13 years, approximately 90% of the students that have completed internships through this program have received offers for regular employment from their host company. We also have an impressive group of corporate partners such as Nike, Intel, IBM, Fairchild Semiconductor, Hewlett Packard, the Army Research Lab, ESI, Nanometrics, FEI Company, nLight, DataLogic and SolarWorld.

Through this program students have the opportunity to earn a degree from a leading research university and also learn what is required to be successful after graduation. We focus on the science and help you develop professional business skills that will allow you to be successful throughout your career.

The course work and labs are designed to help students become more effective problem solvers and will assist in developing your communication, collaboration and leadership skills. The labs are built to give students an opportunity to have experiences that closely mirror those they’ll find in industry.

The UO’s Masters Industrial Internship Program awards MS degrees in Chemistry or Applied Physics. Students entering the program typically have bachelor degrees in one of the following areas: Chemistry, Biochemistry, Physics, Chemical Engineering, Mechanical Engineering, or Electrical Engineering.

You can choose to focus in one of four core areas:

• Photovoltaic & Semiconductor Device Processing

• Optical Materials & Devices

• Polymers & Coatings

• Organic Synthesis & Organometallics

Internships/co-ops typically pay from $2,400 – $5,400 per month. Though internships are not guaranteed, the program has historically placed 98% of its students in internships and the program staff assists in every way to ensure you are a very competitive candidate for available opportunities.

To find out more please visit: internship.uoregon.edu

We are excited to talk to you about the program and life in Oregon–and to help you plan a visit to campus. The University of Oregon is located in Eugene in Oregon’s Willamette Valley. We’re a short drive from the Pacific Ocean, the Cascade Mountains and a two hour drive from Portland – the second largest city in the Pacific Northwest.

For more information:

Lynde Ritzow, Associate Director Masters Industrial Internship Program

T: (541) 346-6835

E: lynde@uoregon.edu

W: internship.uoregon.edu

Semiconductor laser diode produces stabilized optical frequency combs for telecommunications, metrology, signal processing and spectroscopy. October 22, 2010

Posted by POP Section Chair in : Photonics and Optics (POP), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment

by Dr. Peter J. Delfyett, President, National Society of Black Physicists and University Trustee Chair Professor of Optics, ECE & Physics

A novel approach to generating a stabilized, phase-locked and coherent set of peri­odic optical frequency combs enables researchers to develop these sources at a frac­tion of the cost of conventional solid state and fiber based sources and thus facilitates their use in a broad range of information, sensing and measurement applications.

The use of lasers in communications, signal processing, test and measurement systems and spectroscopy has enabled many key advances over the past decades owing to the wide range of useful characteristics that accompany coherent laser radiation. Further advances are envisioned by using multiple lasers, each with differing wavelengths that allow parallel optical channels to increase the measure­ment and processing capability. Additional functionality is enabled if each op­tical frequency channel is phase-locked to the other optical channels, i.e., if the relative phase relation between each wavelength channel is well established and fixed and not drifting over long times [1]. To achieve a set of frequency combs with a fixed phase relation, one can use a single continuous wave (cw) laser and modulation techniques such as amplitude or phase modulation to create sidebands [2]. Further channels can be added through nonlinear optical interactions such as four wave mixing. In this approach, the characteristics of the optical frequen­cy comb, such as frequency stability and linewidth, is completely determined by the cw laser and the electronic signals applied to the modulators. Alternatively, one can use mode-locked lasers to generate a frequency comb with a phase co­herent relationship between each wavelength component. The drawback with a conventional mode-locked laser is that the frequency comb can drift owing to both environmental effects and background quantum effects, such as fluctua­tions in the background spontaneous emission in the gain medium of the laser [3].

Recently, Hansche and co-workers developed a technique that produces a stabilized optical frequency comb based on a technique that requires a mode-locked laser to possess an octave of optical spectra [4]. A salient feature of this approach is that the frequencies of optical comb can be generated on an absolute frequency grid, i.e., the optical frequencies are precisely known to exist at exact multiples of the pulse repetition rate of the laser. A drawback, however is that the laser must possess an octave of optical bandwidth, and generally, the pulse repetition frequency is suf­ficiently low that it is difficult to have access to the individual comb components, owing to their relative close spacing. This feature of the close optical frequency spacing then makes the optical source difficult to employ in commercial applica­tions, such as wavelength division multiplexed optical communication networks.

Our work has focused on developing an optical source that produces a set of widely spaced optical frequencies compared to the octave spanning ap­proach so it becomes suitable for a broad range of communication and signal pro­cessing applications without the need of an octave of bandwidth, and with higher spectral purity and stability of the cw modulated approach. The approach is also self-referencing in that the optical frequency comb is reference to a secondary optical standard, such as a high-Q etalon. To achieve the wide optical channel spacing and high spectral purity, we engineer the optical cavity so that the gen­erated optical frequency comb has wide channel spacing and simultaneously a very narrow linewidth for each “tooth” of the frequency comb. These charac­teristics allow the source to possess very low noise, and possess excellent spec­tral purity for each comb component. In addition, our approach can be performed using any gain medium, e.g., semiconductor, so that the produced comb can be placed anywhere within the optical spectrum, e.g., uv, visible, near infrared, etc.

To achieve a stabilized comb of coherent, phase-locked optical fre­quencies, we engineer the optical cavity to possess wide mode spacing and nar­row linewidth. This is achieved by employing a nested cavity configuration that combines two cavities, where the main cavity has a finesse of 100 and a free spectral range of ~ 5.6 MHz, and a secondary internal cavity with a finesse of 1000 and a free spectral range of 10.287 GHz. The combined cavities gener­ate a frequency comb with a spacing determined by the internal cavity, and in­dividual narrow comb linewidths defined by the main cavity. The free spectral range of the secondary cavity also defines the laser’s pulse repetition frequency. The laser system schematic is shown in Fig. 1. The system may be regarded in two parts; the actively mod-locked laser cavity, and the Pound-Drever-Hall op­tical stabilization loop. A dispersion compensating fiber section of 3.5 meters is included to reduce the cavity dispersion. Active mode-locking is achieved via loss modulation using a Mach-Zehnder style modulator at 10.287 GHz. The driving signal to the modulator is obtained from an ultra low noise oscillator.

The purpose of the internal cavity Fabry Perot etalon (FPE) is two­fold. First, the inclusion of the etalon allows only a single phase locked mode group, or supermode, to lase. Without the inclusion of the etalon, ~1830 inter­leaved supermodes will compete, and the resulting random fluctuations in ampli­tude and phase will disturb the output pulse train. This noise manifests itself in the timing and amplitude noise spectra as a series of noise spurs, called super­mode noise, at multiples of the cavity fundamental frequency (5.6 MHz in this case). Also, the simultaneous lasing of different optical supermodes precludes the use of a single phase locked frequency comb with multigigahertz spacing. In the frequency domain, the FPE may be considered as a periodic bandpass filter that selects a single optical supermode. Without stabilization of the laser cav­ity, however, environmental influences will cause the optical frequencies to drift relative to the transmission peaks of the FPE. These frequency fluctuations will destabilize the mode-locking. The modes of the laser cavity are therefore stabi­lized to the FPE with the Pound-Drever-Hall (PDH) laser frequency stabilization method. The PDH stabilization loop uses the FPE to detect small changes to the optical frequencies of the laser to create an error signal that, after conditioning by a proportional gain-integration-differentiation (PID) controller, is fed back into a piezoelectric actuator to compensate for the frequency change. Thus supermode suppression and optical frequency stabilization are achieved simultaneously with a single intracavity FPE. The resulting performance of this laser produces a spectrally flat stabilized optical frequency comb of ~ 200 comb components on a 10.24 GHz grid. The individual comb linewidth is <500Hz with a stability of ~150 kHz, and has >50dB contrast. The generated periodic pulse train has an over­all timing jitter (1 Hz to 100 MHz) of ~ 3 femtoseconds, with an intensity noise of 0.023%. To our knowledge, this is the lowest jitter multi-gigahertz stabilized optical comb source. Owing to its well defined stable optical comb and low phase noise this laser has applications in photonic analog to digital conversion, coher­ent communication, arbitrary waveform generation and optical clock distribution.

To realize the potential processing speeds and accuracy that photonics promises, the use of stabilized phase coherent optical fre­quency combs is a step toward that vision. Our work shows that the gen­eration of stabilized optical frequency combs can be obtained with excel­lent stability without the need of octave spanning spectra with the cost effectiveness, electrical efficiency, and compactness of semiconductor diode lasers.

References

1. P. J. Delfyett, S. Gee, M. Choi, H. Izadpanah, W. Lee, S. Ozharar, F. Quinlan, T. Yilmaz, “Optical Frequency Combs from Semiconductor Lasers and Ap­plications in Ultra-wideband Signal Processing and Communications, IEEE Journal of Lightwave Technology, Vol. 24, No. 7, pp. 2701-2719, (2006).

2. Sarper S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, P. J. Delfyett, “Ultraf­lat Optical Comb Generation by Phase-Only Modulation of Continuous-Wave Light,” IEEE Photon. Technol. Lett., Vol. 20, No. 1, 36-38 (2008).

3. S. Gee, S. Ozharar, F. Quinlan, J. J. Plant, P. W. Juodawlkis, and P. J. Delfyett, “Self stabilization of an actively mode-locked semiconductor based fiber ring laser for ultra-low jitter”, IEEE Photon. Tech. Lett., Vol. 19, No. 7, 498-500 (2007).

4. J. Reichert, R. Holzwarth, T. Udem, and T. W. Hänsch, “Measuring the frequen­cy of light with mode-locked lasers,” Opt. Commun., vol. 172, p. 59, (1999

Doing Business with DOE February 10, 2009

Posted by NPP Section Chair in : Acoustics (ACOU), Astronomy and Astrophysics (ASTRO), Atomic, Molecular and Optical Physics (AMO), Chemical and Biological Physics (CBP), Condensed Matter and Materials Physics (CMMP), Cosmology, Gravitation, and Relativity (CGR), Earth and Planetary Systems Sciences (EPSS), Fluid and Plasma Physics (FPP), Mathematical and Computational Physics (MCP), Nuclear and Particle Physics (NPP), Photonics and Optics (POP), Physics Education Research (PER) , add a comment

clipboard011
clipboard02

ARE YOU LOOKING FOR?

· Paid undergraduate science research internships?

· Summer research positions for faculty and student teams at a national laboratory?

· Careers with the Federal government or national laboratories?

· Graduate fellowships and Post-Doc appointments?

The Department of Energy is looking for you…

Come see us in the DOE Pavilion

Learn how you can work alongside scientists and engineers experienced at mentoring who want to transfer science knowledge by collaborative research. These programs are for undergraduate students from four year institutions, community colleges, or for students who are preparing to become K-12 science, math or technology teachers and for undergraduate faculty. Internships are available at all DOE national labs.

Up to 8 qualified undergraduate students will be considered for placement in the summer of 2009. The laboratories also have graduate and post-doc opportunities. We look forward to seeing you in Nashville! Please come join us at Booth 304 and the other booths in the DOE Pavilion in the Exhibit Hall Thursday and Friday or at any of the following activities and workshops:

Physics Diversity Summit: Discussion with Bill Valdez, Director, Office of Workforce Development for Teachers and Scientists

Date: Wednesday, February 11

Time: 2:00 PM

Workshop: Brookhaven National Laboratory –On Using Photons

Date: Thursday, February 12

Time: 2:00 – 3:30 PM and 4:00 – 5:30 PM

Workshop: Oakridge National Laboratory—On Using Neutrons

Date: Friday, February 13
Time: 3:00 PM – 4:30 PM; 5:00-6:30 PM

Doing Business with Department of Energy—Research and Grants

Date: Friday, February 13

Time: 3:00 – 4:30 PM