jump to navigation

Tribute given at the Memorial Service for Prof Edmund Zingu held on 25 April 2013 at the University of the Western Cape May 18, 2013

Posted by International.Chair in : Astronomy and Astrophysics (ASTRO), Condensed Matter and Materials Physics (CMMP), History, Policy and Education (HPE) , 1 comment so far

by Prof Patricia Whitelock

I have been asked by Simon Connell, the current President of SAIP to pay tribute to Edmund on behalf of SAIP, but I have also been asked by Ted Williams, the director of the South African Astronomical Observatory to speak on behalf of SAAO. That is important for me as I first met Edmund Zingu in 1995 at the 175th anniversary of the observatory and I came to know him as a personal friend as well as a valued colleague. He was then head of physics at UWC and I had the pleasure of showing him around and was impressed and intrigued by his interest and perceptive questions.  It was the start of a relationship between SAAO and UWC that has gradually strengthened over the years and which will ultimately allow the two organizations to do great things in astrophysics.

You will have your personal memories of Edmund but he was best known to the broader community through his service with SAIP and that is what I want to talk about. As you have already heard Edmund served on the Council of the SAIP for 8 years from 1999 to 2006, as VP from two years while I was President then as President from 2003 to 2004. It would not be an exaggeration to say that when Edmund joined the Council, physics in SA was in crisis. The numbers of undergraduate students enrolling had been dropping for several years, the image of physics among the public and decision makers was poor, finance for physics projects was very limited and the SAIP itself, particularly its leadership, was not representative of the community of physicists in SA,  and people rightly wanted to know what SAIP was going to do.

By the time Edmund left the SAIP council, physics in SA was in a very different place. That was of course due to the combined efforts of a number people, but Edmund was without question was one of the most important. In 2001 Council set up a transformation committee with a very broad mandate to look at all aspects of the SAIP. Edmund and I both served on that committee. The initial driving force for transformation came from Nithaya Chetty, but Edmund, who chaired the committee while he was VP, was absolutely crucial in keeping the debate focused and most importantly keeping us all talking to each other.

These years were particularly exciting as we grappled with the problems in physics at the same time as attempting to restructure the SAIP to play a more relevant role in SA society. My entire experience of working with Edmund was a positive one.  He was someone you could test ideas on and who would tell you very gently and very sympathetically when and why you had got it wrong.  I don’t know if we could have done what we did without him, but I very much doubt it. What I am certain of is that it would have been more difficult and there would have been many more casualties and more blood on the walls. I would like to quote from Jaynie Padayachee, who was secretary of the SAIP during my and Edmund’s presidency and who was also secretary of the transformation committee: “The one thing about Edmund that will always stay with me, is that he personified diplomacy. It was really inspirational (in this world of too many words and opinions) knowing someone who took the time to think about what he was going to say before he said it. “

During my term as President I quickly came to rely on Edmund’s judgment and his support above anything and anyone else.  I suspect that there are many others who must have had similar experiences. He was never heavy handed or unpleasantly forceful, when things were said that he did not agree with he would gently point out that not everyone had the same experience and that there were other ways of looking at issues. It was quiet, it was gentle, it was undemonstrative and it dramatically effective. I quote from Jappie Engelbrecht, who is the treasurer of SAIP, as he was when Edmund and I were President: Japie after reading Simon Connell’s words about Edmund responded “I have nothing to add except my sadness at the passing of a truly great South African, whose impact on my own life enabled me to transform to our new democracy.”His words apply to many of us who worked with Edmund.

Those transformation activities resulted in a revised constitution and by-laws for the SAIP, more involvement of the specialist groups in council, a president who was directly elected by the membership, and a new mindset and symbolism of a new logo to prove it. That of course took several more years.

At roughly the same time that we started the transformation process, in fact really as part of the same initiative we established the process that culminated in an international panel review and the production of a document: “Shaping the future of physics in South Africa”.  This process was lead by Edmund during his presidency and must have taken up a huge amount of his personal time. This led to a new strategy for physics, and among other things establishment of the National Institute of Theoretical Physics (NITheP) and to the increased financial support from government that enabled SAIP to appoint an Executive Officer – which has been so important in allowing SAIP to do things more professionally.

One of the international participants in the shaping the future process, was Jim Gates, who as many of you know is now on USA President’s scientific advisory panel. The following words were written by Jim Gates and express Edmund’s role better than I can:

I am certain now that the Shaping Report has served exceedingly well as a national strategy and planning document for the South African physics community in a manner that none of its authors had foreseen in terms of its scope, duration or effectiveness. Dr. Zingu’s management of the entire Shaping process was a marvelous testament of his dedicated to the health of the physics field in South Africa.   His skills as a manager of personnel were on direct display, from my perspective, in the assembly of the International panel. He chose persons from S.A., from Europe, and the U.S.A. as a reflection of his understanding of the international and global nature of the interaction required for physics to thrive in S.A. in the new millennium. He also saw the International Panel was assembled in such a way as to be a final executive part of the process that lived up to his high expectation and vision.

The Shaping Report is among the greatest of tributes to Dr. Zingu as it continues almost a decade latter to have a substantial impact on thinking about South African physics. The report challenged all of the stake-holding communities to plan on multiple levels. “

He goes on to describe his personal gratitude to Edmund as a mentor for giving him the skills that he has particularly needed and which prepared him for his role as advisor to President Barack Obama

Since leaving the SAIP Council Edmund has continued to serve the community. In particular he has again played the leadership role in the Review of Physics Teaching, which is currently underway – the next big hurdle in the success of physics in SA, or indeed globally. I have no direct experience of his work with this, but Simon Connell tells me that he handled the project magnificently. In fact has been so well constructed by Edmund that neither SAIP nor CHE have any concern about its completion.

There can be no doubt that Physics and South Africa are better off because Edmund Zingu was who he was, when he was. We,as physicists and as friends of Edmund, have every reason to thank his family and to join them in celebration of a life extraordinarily well lived in the service of our community.

In Memoriam: Edmund C. Zingu April 26, 2013

Posted by International.Chair in : Condensed Matter and Materials Physics (CMMP), History, Policy and Education (HPE), Physics Education Research (PER), Technology Transfer, Business Development and Entrepreneurism (TBE) , 2comments

Professor Edmund Zingu served on the South African Institute of Physics (SAIP) Council from 1999 to 2006, and was President of the SAIP from 2003 to 2004.  He was in fact the first black President in the history of the SAIP[1].

He played crucial leadership roles in many projects, particularly in physics related development issues.  He was Vice President of the IUPAP, and Chair of the C13 Commission on Physics for Development.  He was primarily responsible for bringing to South Africa the iconic ‘Physics for Sustainable Development’ conference in 2005[2] as a part of the International Year of Physics.  This conference cast a distinct spotlight on physics as an instrument for development in Africa.

We would like to specifically mention his tremendous contribution to two extremely important projects of the Institute.  The first was the highly successful Shaping the Future of Physics, where he contributed to the design of the project and also served as chair of the Management and Policy Committee that oversaw the international review in 2003.

The Shaping the Future of Physics in South Africa report was written by a body designated as the ‘International Panel’ or IP.  The IP was composed of M. A. Hellberg (convenor), M. Ducloy, K. Bharuth-Ram, K. Evans-Lutterodt, I. Gledhill, G. X. Tessema, A.W. Wolfendale, and S. J Gates.  The report has served exceedingly well as a national strategy and planning document for the South African physics community in a manner that none of its authors had foreseen in terms of its scope, duration or effectiveness.

Dr. Zingu’s management of the entire Shaping process was a marvelous testament of his dedication to the health of the physics field in South Africa.  His skills as a manager of personnel were on direct display in the assembly of the IP.  He advocated for selection of representatives from South Africa (Bharuth-Ram, Gledhill, and Hellberg), from Europe (Ducloy, and Wolfendale), and the USA (Evans-Lutterodt, Gates, and Tessema) as a reflection of his understanding of the global nature of the interactions required for physics to thrive in South Africa in the new millennium.  He also saw to it that the IP was assembled in such a way as to be a final executive part of the process that lived up to his high expectation and vision.

The Shaping Report is among the greatest of tributes to Dr. Zingu as it continues almost a decade later to have a substantial impact on thinking about South African physics.  The report challenged all of the stake-holding communities to plan on multiple levels.  Projects like the projects like the SAIP Executive Office, National Institute for Theoretical Physics (NiTheP), South African National Research Network (SANReN), SA-CERN, and SKA-Africa have become a reality.  The report called also for the possibility of other ‘flagship’ projects such as a South African synchrotron, to drive the large scale development of the field, and there has been significant encouraging progress here.  At the more granular level there was a call for transformation so that the field would be open to all citizens of the country.  Physics in South Africa has grown significantly since then, largely because of the implementation of many of the recommendations from the Review.  Also during this time Dr. Zingu authored the very influential article, Promoting Physics and Development in Africa, which appeared in Physics Today[3].

For one of us (Gates), the Shaping Report was preparation for service as a policy advisor for both the Governor of Maryland (via my role on the Maryland State Board of Education) and for President Barack Obama (via my role on the U.S. President’s Council of Advisors on Science & Technology – PCAST).  These accomplishments are due in part to Edmund’s confidence in me and his abilities as a mentor.  I owe this great South African an enormous debt of gratitude for how he challenged me to grow professionally.

The second project was the Review of Undergraduate Physics Education.  Once again he contributed to the design of the Review and chaired the Management and Policy Committee.  He led the development of the South Africa Draft Benchmark Statement for Physics Training, and guided the Review process, including the partnership with the Council for Higher Education.  The Review of Physics Training is well advanced but still in progress.

Professor Zingu began his physics career at the University of the Western Cape (UWC).  He was a materials physicist, and with his collaborators at Cornell University invented a new method to study atomic diffusion by transmission electron microscopy[4].  Later he studied diffusion phase transitions in thin films due to induced thermal stress[5].  He had a period of employment at Turfloop, QwaQwa Campus, then as Head of the Physics Department and later Dean of Basic Sciences (1990-1993) at MEDUNSA.  He later returned to UWC and served as Head of the Physics Department (1994-1998), and finally Vice Rector of Mangosuthu University of Technology in Umlazi, Durban until the time of his retirement.

Edmund was a pioneer for physics in post-apartheid South Africa, a visionary, a tireless campaigner for strengthening the discipline of physics* and, above all, a true gentleman.  His leadership and contributions were characterized by sensitivity, perceptiveness, vision, ethics, wisdom, global standards and great industry.  He will be sorely missed.

Simon Connell
President, South African Institute of Physics (2012-2014)

Nithaya Chetty
President, South African Institute of Physics (2007-2009)

S. James Gates, Jr.
President, National Society of Black Physicists (1996-1998)

More comments from Dr. Zingu’s friends and colleagues

Professor Zingu was a dear friend and professional colleague over the past ten years.  He was extremely helpful during the deliberations of the 2004 Review of iThemba LABS that I chaired for the National Research Foundation.  During that time, Professor Zingu was President of the South African Institute of Physics.  In another effort, he was one of the main drivers in working with Professor Alfred Msezane of Clark Atlanta University and a number of us at the African Laser Centre to organize the 1st US-Africa Advanced Studies Institute on Photon Interactions with Atoms and Molecules.  That institute convened in Durban during November 2005, just after the World Conference on Physics and Sustainable Development, which was part of the United Nation’s International Year of Physics.  Professor Zingu leaves a tremendous legacy for all African and other peoples to emulate.  We will miss his kind demeanor and tremendous insights into the future.
Sekazi K. Mtingwa

I met Prof. Edmund Zingu nearly 20-years ago in November 1995 at the University of the Western Cape, in Cape Town, where he was Chair of the Physics Department. Edmund invited me on my first travel to South Africa for nearly two-weeks to  lecture on Ultrafast Optical Phenomena at several institutions — U. of Port Elizabeth, the National Accelerator Centre, U. of Cape Town, U. of Witwatersrand, U. of the Western Cape and the Foundation for Research Development (analog of the US National Science Foundation). This was the first and only time that I spent time away from my family during Thanksgiving, and Edmund provided a warm and inviting environment for my visit. I spent several days with Edmund’s wonderful family and learned a great deal about South Africa and its people. Arriving not long after the release of Nelson Mandela and the official end of Apartheid, Edmund with his gentle, soft-spoken and brilliant nature alleviated my natural apprehension of visiting South Africa at that time. I had a truly wonderful visit and scientific exchange orchestrated by Prof. Edmund Zingu and I am truly saddened by the loss of this extraordinary individual — my deepest condolences go out to his family.
Anthony M. Johnson

Two weeks ago, at a diaspora gathering for STEM in Africa, the challenge that African scientists face on the continent was discussed. The critical question was “How can academics in Africa get the attention of the leaders?”  The idea of international advisory panels modeled after the 2004 Shaping panel was received with much enthusiasm. The composition of the panel, the charge to the panel, and the implementation was such a testimony of the high quality of the leadership of SAIP under Edmond Zingu. May he rest in peace.
Tessema G.X.

To this excellent tribute, I would like to add my personal sadness at the passing of a truly great South African, whose impact on my own life enabled me to transform to our new democracy.
Japie Engelbrecht


[1] Physics Today, Vol 54 (9) Sept 2001, p 27, http://dx.doi.org/10.1063/1.1420507

[2] Physics World, October 2005, pp 12-13, http://physicsworld.com/cws/archive/print/18/10

[3] Physics Today, Vol 57 (1) Jan 2004, p 37, http://dx.doi.org/10.1063/1.1650068

[4] Chen, S. H., L. R. Zheng, J. C. Barbour, E. C. Zingu, L. S. Hung, C. B. Carter, and J. W. Mayer. “Lateral-diffusion couples studied by transmission electron microscopy.” Materials Letters 2, no. 6 (1984): 469-476. http://dx.doi.org/10.1016/0167-577X(84)90075-2

Zingu, E. C., J. W. Mayer, C. Comrie, and R. Pretorius. “Mobility of Pd and Si in Pd2Si.” Physical Review B 30, no. 10 (1984): 5916. http://dx.doi.org/10.1103/PhysRevB.30.5916

[5] Zingu, E. C., and B. T. Mofokeng. “Diffusional Phase Transformation under Induced Thermal Stress.” In MRS Proceedings, vol. 230, no. 1. Cambridge University Press, 1991. http://dx.doi.org/10.1557/PROC-230-145

Zingu, E. C., and B. T. Mofokeng. “Stress Relaxation During Diffusional Phase Transformation Under Induced Thermal Stress.” In Materials Research Society Symposium Proceedings, vol. 308, pp. 85-85. Materials Research Society, 1994. http://dx.doi.org/10.1557/PROC-308-85

Diale, M., C. Challens, and E. C. Zingu. “Cobalt self‐diffusion during cobalt silicide growth.” Applied Physics Letters, vol. 62, no. 9 (1993): pp 943-945. http://dx.doi.org/10.1063/1.108527

[6] P. Whitelock,  Tribute given at the Memorial Service for Prof Edmund Zingu held on 25 April 2013 at the University of the Western Cape

Dr. Kartik Sheth, ALMA, and SKA March 19, 2013

Posted by admin in : Astronomy and Astrophysics (ASTRO), Cosmology, Gravitation, and Relativity (CGR) , add a comment

by JC Holbrook

National Society of Black Physicists members Eric Wilcots and Kartik Sheth were part of a new initiative to foster radio astronomy collaborations with South African astronomers and students. Last week marked the official inauguration of ALMA, the Atacama Large Millimeter/Submillimeter Array, in the high altitude Atacama desert of Chile, South America. I was able to sit down with Dr. Sheth to discuss the broader issue of radio astronomy and South Africa.

“I think this celebration was the culmination of thirty years worth of work from a lot of different people. The inauguration of the array was a chance for us to celebrate how much hard work has gone into it.” Dr. Sheth said of the inauguration ceremony in Chile. “We started science operations September 30th of 2011. We have been collecting data for over two and a half years, because even with a small ALMA it is still the most powerful [millimeter/submillimeter] telescope in the world.”

Since ALMA is an array of dishes similar to the radio dishes of the Very Large Array in New Mexico, even during construction as each dish was put into place and connected, the astronomers were already using what was available to collect data. Thus, the months of science data collection with ALMA before the official inauguration.

I pointed out, “You were not even there!”

Dr. Sheth laughed, “Only the dignitaries were invited, so a lot of people from the political arena in the twenty-five plus countries that are part of ALMA. President Piñera inaugurated ALMA…For me it doesn’t mean much… but I’m kinda sad that I’m not there because I really wanted to be there. But I knew that I wasn’t going to be invited, so coming here [to South Africa] really was driven by the NASSP deadline for Master’s proposals.” NASSP is the National Astrophysics and Space Sciences Programme in South Africa. In 2010, I began writing a book about NASSP. The program is a dramatic success story about educating underrepresented groups in astrophysics and space sciences. NASSP include one honor year and a two year masters of science degree. Nearly all NASSP students are funded by the program.

Dr. Sheth explained, “The idea is to foster bridges between the faculty here that are taking on students who eventually want to work with MeerKat and SKA. But MeerKAT and SKA are not built, yet. So, what we would really like the faculty to do is to think about including radio data from existing telescopes and NRAO operates four of them.”

The SKA is currently under construction, yet the South African astronomy students need to learn everything about radio astronomy and the analysis of radio data. Dr. Sheth along with other American radio astronomers is here to encourage South African astronomers and their students the opportunity to learn by working with the existing facilities and their archival data. The four facilities are ALMA, the Robert C. Byrd Greenbank telescope a single dish in West Virginia, the Jansky Very Large Array (JVLA or EVLA) which is the enhanced VLA in New Mexico, and the Very Large Baseline Array (VLBA) which is spread across the Northern Hemisphere. Thus, the visit before the NASSP deadline for submitting Masters of Science thesis proposals. Dr. Sheth hopes that a few NASSP students will propose radio astronomy projects including using NRAO facilities for their Masters work.

According to Dr. Sheth the JVLA is the Northern Hemisphere equivalent of what MeerKat will be. MeerKat is the precursor to the SKA, the Square Kilometer Array.  It is a new state of the art radio observatory currently being built in South Africa. The SKA array itself will consist of 3000 dishes spread across nine African countries: South Africa, Namibia, Botswana, Mozambique, Madagascar, Mauritius, Zambia, Ghana, and Kenya. The SKA Africa headquarters are in Cape Town, South Africa, and they will be coordinating all of the African construction. A question I thought would be uppermost in the minds of South Africans was: Will ALMA be competition for SKA?

His response, “No, not at all. ALMA operates at higher frequencies than what the SKA will operate at. They are not looking at the same part of the electromagnetic spectrum but they will be looking at the same type of objects. EVLA is a mini version of SKA. With the SKA, it will be observing thermal emission and synchrotron emission from sources…” In an email he added, “We are looking at electrons energy as they cool around star forming regions or zip around magnetic fields. So you can get a real idea of the magnetic field that pervades the Milky Way and with the SKA across cosmic time. ALMA cannot really look at atomic gas unless its at very high red shift (i.e. the lines are red shifted into the regime that ALMA can observe) and only using atomic gas tracers like ionized carbon, nitrogen, or oxygen. ALMA cannot look at the atomic hydrogen gas which is emitting in the wavelengths that MeerKat and SKA will work at. So SKA & Meerkat are looking at the atomic gas from which molecular gas forms. And the molecular gas is what ALMA looks at which from stars form. And the stars are what HST and JWST look at. So it is a nice transition.  Together these are giving you the full picture of what the universe looks like. Additionally there is a lot about magnetic fields and transient phenomena — these are also MeerKat and SKA’s core strengths. For instance, these will be excellent instruments for looking at the timing of pulsars.”

Trying to put it altogether I asked, “So, anything that is hot and has electrons moving around will be able to be studied by SKA?”

Kartik Sheth clarified, “No, I wouldn’t call it ‘hot’. The atomic gas is quite cold as well. It is hotter than the molecular gas but not hot compared to stars.”

As a student of astronomy, I had always had a fascination with the connection between wavelengths of light or color, physical properties, chemistry, and celestial bodies. Planetary nebulae, which are mentioned in my last Vector blog, in visible light appear greenish in color. The color is the result of a specific atomic transition in the oxygen atom that occurs under very low density conditions. First the oxygen has to be ionized twice, i.e. it has to have lost two electrons, then it is through collisions that the transitions producing the characteristic green lines emit. A rule-of-thumb temperature for planetary nebulae is 10,000 degrees Kelvin. Thus, if there is a celestial body that appears ‘green’ in visible light you can conclude that it might include oxygen especially if it is a nebula which tends to have low density and it should be around 10,000 degrees Kelvin. Hydrogen is also found in planetary nebulae and the strongest transition line, known as H-alpha, occurs when its electron goes from an excited state to a less excited state releasing energy in the form of red light.

In the case of ALMA and SKA, they are probing two different sections of the electromagnetic spectrum similar to studying green light or red light. In the fullness of time, SKA will cover the same wavelengths and types of celestial bodies as the EVLA but focused on the Southern sky rather than the Northern, but also be more sensitive revealing more physical details. ALMA will add to our understanding of the same region of the sky but is studying different physical properties of celestial bodies. Both will add to our understanding of the Milky Way and the Universe.

Interview with Tony Beasley: New director of the National Radio Astronomy Observatory August 17, 2012

Posted by admin in : Astronomy and Astrophysics (ASTRO), Earth and Planetary Systems Sciences (EPSS), History, Policy and Education (HPE), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment

Last February the Associated Universities, Inc. appointed Dr. Anthony Beasley as the next NRAO director. Originally from Australia, Beasley has had a distinguished career in radio astronomy. He has played a key role in the planning and commissioning of several major instruments and facilities. In his most recent appointment his skills were used in ecological research, where those colleagues too have large networks of major scientific facilities. In a wide-ranging interview with Waves and Packets, Beasley discusses the future of NRAO and of radio astronomy in general, global collaborations like the Square Kilometer Array and VLBI, the U.S. astronomy portfolio in tough budgetary times and the promise of citizen-science in making profound discoveries.

Listen to interview

NSBP Member, Hakeem Oluseyi, selected to be a TEDGlobal 2012 Fellow March 31, 2012

Posted by admin in : Astronomy and Astrophysics (ASTRO), Cosmology, Gravitation, and Relativity (CGR), Earth and Planetary Systems Sciences (EPSS), History, Policy and Education (HPE), Photonics and Optics (POP), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment
Florida Institute of Technology professor, Hakeem Oluseyi, has been selected to be 2012 TED Global Fellow.  He will participate in the TED conference in Edinburgh, Scotland, June 25-29.  Dr. Oluseyi is an astrophysicist, inventor and science educator whose research focuses on measuring the structure and evolution of the Milky Way galaxy and characterizing new planetary systems.  Oluseyi has lectured widely in the US and Africa.  He was one of the founding members of the African Astronomical Society and is currently an officer of the National Society of Black Physicists.  TED is a nonprofit devoted to Ideas Worth Spreading. It started out (in 1984) as a conference bringing together people from three worlds: Technology, Entertainment, Design.  Past TED Fellows include CERN’s Bilge Demirkoz, Harvard’s Michelle Borkin, and NASA’s Lucianne Walkowicz.
Dr. Hakeem M. Oluseyi is an astrophysicist with research interests in the fields of solar and stellar variability, Galactic structure, and technology development.   After receiving his B.S. degrees in Physics & Mathematics from Tougaloo College in 1991, he went on earn his Ph.D. at Stanford University with an award winning dissertation, "Development of a Global Model of the Solar Atmosphere with an Emphasis on the Solar Transition Region."  His Ph.D. adviser was legendary astrophysicist, Arthur B. C.  Walker.
During his tenure at Stanford, Oluseyi participated in the pioneering application of normal-incidence, EUV multilayer optics to astronomical observing as a member of the Stanford team that flew the Multi-Spectral Solar Telescope Array (MSSTA) in a series of rocket flights from 1987 to 1994.  This technology has now become the standard for solar EUV imaging.  He was a major contributor to the analyses that illustrated flows in solar polar plumes for the first time and also showed for the first time that plumes were not the sources of the high-speed solar wind as was believed.  He also led the effort that discovered the structures responsible for the bulk of solar upper transition region (plasmas in the temperature range from 0.1 – 1.0 MK) emission and ultimately presented a new model for the structure of the Sun's hot atmosphere. 
After leaving Stanford in 1999 Dr. Oluseyi joined the technical staff at Applied Materials, Inc. where he invented several new patented processes for manufacturing next-generation, sub 0.1-micron, refractory metal transistor gate electrodes on very thin traditional and high-k dielectrics.  He also developed patented processes for in-situ spectroscopic process control and diagnostics, facilitating elimination of test wafers in semiconductor manufacturing.  This work has resulted in 7 U.S.  patents and 4 E.U.  patent.
In 2001 Dr. Oluseyi joined the staff of Lawrence Berkeley National Laboratory (LBNL) as an Ernest O. Lawrence Postdoctoral Fellow.  There he established a new laboratory, the CCD Production Facility, and developed new techniques for characterizing and packaging large-format, thick (300 micron), p-channel charge coupled devices (CCDs).  As a member of the SuperNova Acceleration Probe (SNAP) satellite collaboration and the Supernova Cosmology Project at LBNL, Dr. Oluseyi participated in the development of high-resistivity p-channel CCDs and performed spectroscopic observation of supernovae utilizing the Shane Spectrometer on the Lick Observatory's Nickel 3-m telescope. 
In January 2004 Dr. Oluseyi joined the physics faculty of The University of Alabama in Huntsville where he continued his research in solar physics, cosmology, and technology development but also focused on increasing the number of Black astrophysicists.   His efforts have thus far resulted in producing one of only two Black female solar physicists working in the U.S., mentoring a total of three African American graduate students, and six African graduate students. 
Oluseyi also began working extensively in Africa beginning in 2002.  He visited hundreds of schools and worked directly with thousands of students in Swaziland, South Africa, Zambia, Tanzania, and Kenya as a member of Cosmos Education in the years 2002, 2003, 2004.  In 2005 he began working with the South African Astronomical Observatory.  In 2006 he was the co-organizer of the 2006 Total Solar Eclipse Conference on Science and Culture.  Also in 2006, he co-founded a thriving Hands-On Universe branch in Nairobi, Kenya.  In subsequent years he worked with other teams dedicated to improving science research in Africa including the 2007 International Heliophysical Year conference in Addis Ababa, Ethiopia and the First Middle-East Africa, Regional IAU Meeting in Cairo, Egypt in 2008. 

Also in 2008 he began working with at-risk graduate students in the Extended Honors Program at the University of Cape Town (UCT) in collaboration with the South African Astronomical Observatory (SAAO) and the National Society of Black Physicists.  Oluseyi lectured physics and cosmology to UCT students in 2008 and 2009.  In 2010, he lectured and mentored students in the SAAO/UCT Astronomy Winter School. 
During 2010 and 2011, Oluseyi played a central role in establishing the African Astronomical Society (AfAS), the first continent-wide organization of African astronomy professionals.  He was a participant in the IAU-sponsored meeting of the Interim Leadership Group for forming the AfAS, and subsequently served as the Interim President of the AfAS until its official launch in April 2011. 
In May 2011, Oluseyi conducted a 6-city tour of South Africa as a Speaker & Specialist for the U.S. State Department.  During his visit he visited dozens of schools, museums and science centers, working with thousands of students, and a multitude of teachers, education administrators, and researchers.  In fall 2011 Oluseyi and professors at the University of Johannesburg won a grant from the U.S. State Department to found a Hands-On Universe branch in Soweto, South Africa. 
Oluseyi plans to return to South Africa to work with UCT students including leading observational research projects at the SAAO observatories in Sutherland.  Oluseyi also has ongoing research programs in collaboration with SAAO and University of Johannesburg scientists.
In January 2007 Dr. Oluseyi was invited to join the Department of Physics & Space Sciences at the Florida Institute of Technology.  He has since established a large research group that studies solar variability using space-based instruments, studies Galactic structure and stellar properties using periodic variable stars as probes, and is measuring the characteristics of extrasolar planetary systems using data from the LINEAR and KELT surveys and meter-class telescopes in North America and Chile.  He is a member of the Variables & Transients science collaboration for the Large Synoptic Survey Telescope.  Oluseyi recently founded the first observational astronomy consortium consisting primarily of minority-serving colleges and universities.

Dr. Oluseyi has won several honors including selection as a TED Global Fellow (2012), as a Speaker & Specialist for the U.S.  State Department, Outstanding Technical Innovation and Best Paper at the NSBE Aerospace Conference (2010), NASA Earth/Sun Science New Investigator fellow (2006), the 2006 Technical Achiever of the Year in Physics by the National Technical Association, selection as the Gordon & Betty Moore Foundation Astrophysics Research Fellow (2003-2005), and as an E. O. Lawrence Astrophysics Research Fellow (2001-2004), and winner of the NSBP Distinguished Dissertation award (2002).


Synchrotron Science on the Move in South Africa February 4, 2012

Posted by International.Chair in : Nuclear and Particle Physics (NPP) , add a comment

By Sekazi K. Mtingwa
MIT and African Laser Centre
Consultant to Brookhaven National Laboratory

Excitement is growing within South Africa’s synchrotron light source user community. That excitement led to a two-day workshop, held December 1-2, 2011, in Pretoria to finalize plans for the drafting of a strategic plan document to be submitted to the government’s Department of Science and Technology (DST), which is broadly responsible for science and technology in the country, and the National Research Foundation (NRF), which is responsible for the distribution of research funding similar to what the National Science Foundation does in the United States. Top officials from those agencies attended the workshop, including Romilla Maharaj, NRF Executive Director of Human and Institutional Capacity Development; Rakeshnie Ramoutar, NRF Program Director of Strategic Platforms; and Takalani Nemaungani, DST Director of Global Projects. Daniel Adams, Chief Director: Emerging Research Areas & Infrastructure at the DST, provided funding for the workshop and the South African Institute of Physics (SAIP), which is similar to our American Physical Society, handled the logistics.

The entity that mainly drove the convening of the workshop was the Synchrotron Research Roadmap Implementation Committee (SRRIC), which is chaired by Tshepo Ntsoane from the South African Nuclear Energy Corporation (NECSA) and co-chaired by Wolf-Dieter Schubert from the University of the Western Cape.

Approximately forty scientists attended the meeting, including those from international facilities. Herman Winick of SLAC and Sekazi Mtingwa of MIT attended, and Brookhaven National Laboratory’s Erik Johnson and Ken Evans-Lutterodt joined via teleconferencing. Johnson and Evans-Lutterodt discussed the pros and cons of South Africa’s inheriting Brookhaven’s second generation light source called the National Synchrotron Light Source, which is soon to be replaced by NSLS II. However, the consensus of the workshop was that a new third generation facility would much better serve national and regional needs. The largest contingent of foreign visitors were from the various European light sources, including José Baruchel, Jürgen Härtwig, and the Laboratory Director General, Francesco Sette, from the European Synchrotron Radiation Facility (ESRF) in Grenoble, France; Jasper Plaisier from Elettra in Trieste, Italy; Trevor Rayment from Diamond in Oxfordshire, UK; and Hermann Franz from Petra III in Hamburg, Germany. Oxford University’s Angus Kirkland did an outstanding job of facilitating the two-day meeting.

South Africa is relatively new to the international community of synchrotron light source users. Simon Connell, of the University of Johannesburg, has documented the history of South African scientists’ usage of synchrotron radiation. The first were Trevor Derry and Jacques Pierre Friederich “Friedel” Sellschop (deceased), both from the University of the Witwatersrand (Wits). In 1994, Derry performed studies of diamond surfaces at both the Synchrotron Radiation Source-Daresbury Laboratory and ESRF. During the same year, Sellschop participated in other diamond studies at ESRF. Then in 1996, Giovanni Hearne, currently at the University of Johannesburg, used the facility at ESRF to study materials under extreme pressures. Bryan Doyle, now at the University of Johannesburg, served as a postdoctoral researcher at ESRF around 1999. From those early efforts, the synchrotron light source user community started to grow.

Hearne’s early experiences at ESRF so excited him that, upon returning to South Africa, he wrote a two-page letter to Khotso Mokhele, then President of the Foundation for Research Development (now the National Research Foundation), to share those experiences and impress upon him that a synchrotron light source is a key single tool that could have wide impact across many scientific disciplines. Moreover, Hearne suggested that a long-term goal should be for South Africa to construct its own light source via a consortium of international partners, especially involving neighboring countries in Southern Africa.

In 2002, at the urging of the Edward Bouchet-Abdus Salam Institute (EBASI), which is an organization based at the International Centre for Theoretical Physics (ICTP) in Trieste that promotes African – African American collaborations, the African Laser Centre included the design and construction of a synchrotron light source as a long-term goal in its Strategy and Business Plan. Next, Tony Joel and Gabriel Nothnagel of NECSA co-authored a motivational paper entitled, The South African Light Source: Proposal for a Feasibility Study for the Establishment of an African Synchrotron Radiation Facility (2003), followed by Tony Joel’s paper, The South African Synchrotron Initiative: The South African Light Source: A Synchrotron for Africa – Strategic Plan (2004). On another front, in 2004, the DST/NRF/SAIP commissioned an international panel of experts that released the report, Shaping the Future of Physics in South Africa, which called for consideration of new flagship projects to complement those in astronomy, such as the South African Large Telescope (SALT) and the Square Kilometre Array (SKA). They used a synchrotron light source as a prime example of such a project. Key members of that panel from the U.S. were Ken Evans-Lutterodt, S. James Gates from the University of Maryland-College Park, and Guebre Tessema from the National Science Foundation.

The first organizational structure for a synchrotron science community took shape in 2003, when a committee of synchrotron users established the South African Synchrotron Initiative (SASI). Van Zyl de Villiers of NECSA played a key role in getting DST’s participation in SASI activities. The leadership of SASI mainly consisted of Tony Joel; Simon Connell; Giovanni Hearne; and Lowry Conradie, an accelerator physicist from South Africa’s national accelerator center called iThemba LABS, located just outside of 3 Cape Town. As a result of its participation with SASI, in January 2005, the DST itself assumed a leading role in building the synchrotron science community by forming the Synchrotron Task Team (STT), with Tshepo Seekoe of the DST serving as Chair and Simon Connell leading the development of the science case. It was during this period that the synchrotron science community began to mobilize as a coherent group.

With the assistance of SOLEIL, ESRF and other organizations, the STT organized the first two of a series of roughly biennial Science @ Synchrotrons Conferences (S@S) in November 2005 and February 2007. Both conferences were extremely successful in developing new projects and sparking the interest of students in synchrotron light source training. Members of the U.S. physics community, including Herman Winick, Alfred Msezane of Clark Atlanta University, and Sekazi Mtingwa, participated in planning and giving presentations at those conferences, which helped to establish a close partnership between South African synchrotron users and their foreign colleagues, especially the French. After the second conference in 2007, the synchrotron community further empowered itself with the establishment of SRRIC, which succeeded the STT in championing synchrotron science in South Africa. The first Chairs of SRRIC were Simon Connell and Giovanni Hearne. Following the S@S conference in February 2009, Brian Doyle assumed the Chair, followed by Tshepo Ntsoane.

All the above-mentioned activities culminated in the excitement that birthed the December 2011 Strategic Plan Workshop. The NRF representatives requested that SRRIC document the outputs of the workshop by March 2012 in the form of a white paper strategic plan. Then it would study the white paper to determine if it would give the go-ahead for the development of a detailed business plan by June 2012. Those dates were selected to coincide with the dates of the various stages of the government’s budgeting process. SSRIC appointed a three-person committee to write the strategic plan, consisting of Brian Masara, Executive Officer of SAIP; Douglas Sanyahumbi, Director of the Technology Transfer Office at the University of the Western Cape; and Sekazi Mtingwa, with the latter chairing the committee.

Although the strategic plan has not been completed, there are some overarching comments that can be made. First, there is widespread agreement that the mission of SRRIC going forward will be as follows: To support and facilitate the development and growth of synchrotron science in South Africa in order to ensure that it contributes to excellence in science, innovation and industrial development by exploiting the benefits of synchrotron radiation in advancing fundamental and applied science through

1. Developing human capital, including attracting back the African scientific Diaspora (brain gain) and mitigating any threat of brain drain of young South 4 Africans who have recognized this as a key research tool for their career development;
2. Developing key and/or strategic international collaborations;
3. Ensuring financial support to South Africans whose proposals successfully compete for beam-time at international synchrotron facilities; and
4. Promoting awareness and use of synchrotron science and its capacity to enable the exploration of new frontiers of technology.

In pursuing this mission, the synchrotron science community and the government must undertake a number of key initiatives, including

1. Deciding at what level it should formalize its relationships with foreign light source facilities, especially with ESRF, which is the most heavily used by South African researchers; (Francesco Sette invited South Africa to join ESRF as a Scientific Associate at the 1% level, since its researchers’ utilization of that facility is already approximately at that level.)
2. Studying the feasibility of constructing South African or multinational beam-lines at foreign synchrotron facilities;
3. Promoting a significant growth in the number of synchrotron users, with a heavy emphasis on increasing the number of students being trained, such as at the many synchrotron radiation schools that are offered at a number of international facilities and institutions, such as ICTP;
4. Developing programs to preserve and expand the existing technical expertise, such as sending scientists and engineers abroad to join accelerator teams at foreign facilities to expand capabilities in areas such as ultra-high vacuum systems, radiofrequency cavities, magnets, power supplies, and controls;
5. Improving the local, critical feeder infrastructure that allows researchers to prepare and analyze samples before and after being shipped for studies at foreign synchrotron facilities
6. Promoting greater involvement of industrial users;
7. Studying the feasibility for constructing a third generation light source;
8. Developing mechanisms to educate the public about the revolutions in science and technology, such as the discovery of new pharmaceuticals, that synchrotrons afford.

The figure appended provides a plot of South Africa’s synchrotron light source usage in terms of the number of users, beam-line shifts, graduate students trained, and visits to synchrotron facilities. The data represent a rough approximation, based on preliminary surveys; however, note that the 2011 data represent only part of the year, since 2011 had not ended by the time of the workshop. According to the data, the number of students trained at foreign facilities has increased from six (6) in 2005 to thirteen (13) in 2011, thus showing a growth in human capital, especially over the past three years. The long 5 distances and substantial travel expenses are major factors that impede the increase in the number of students being trained. A local facility would be most advantageous to address this need.

Synchrotron Usage in South Africa

Among the workshop presentations, two were especially notable, since they involved applications of synchrotron light source techniques to disciplines for which many are not aware. One involved research in paleontology, for which Kristian Carlson from Wits discussed his collaboration with Lee Berger, also from Wits, and Paul Tafforeau from ESRF. Among other things, they perform dating and craniodental investigations of the possible human ancestor, Australopithecus sediba, which is the much-publicized fossil remains that Berger’s nine-year-old son, Matthew, discovered in 2008 while assisting his father in field work. In a presentation involving light source applications to heritage science, Leon “Jake” Jacobson from the McGregor Museum (Kimberly), discussed his applications of light sources to study rock art, namely ancient paintings on stones. He investigates such issues as the composition of the paints and how their interactions with rock substrates contribute to the art’s conservation. There is increasing worldwide interest in the use of synchrotron radiation in art and archaeology.

Finally, it is notable that Esna du Plessis and Bruce Anderson attended the workshop to represent the oil and gas company, Sasol Technology. They reported on their use of synchrotron radiation in pursuing extended X-ray absorption fine structure techniques for the study of H2, CO and synthetic gas activation of nano iron. They also made a strong case for a local source to enable more industrial use of light sources.

In conclusion, the momentum is building rapidly within the South African synchrotron science community. SRRIC, as its representative, is committed to maintaining, and indeed intensifying, that momentum. Based upon the Strategic Plan that summarizes the outputs of the December 2011 workshop, SRRIC is looking forward to a favorable decision from DST/NRF requesting it to proceed to the development of a detailed Business Plan by June 2012 in order to move synchrotron science in South Africa to the next level of international prominence.

January 30, 2012

This article is also published in the Spring 2012 Newsletter of the Forum on International Physics of the American Physical Society.

IAU Office of Astronomy Development Stakeholder’s Workshop – Day 3 December 17, 2011

Posted by International.Chair in : Astronomy and Astrophysics (ASTRO), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment

by Dr. Jarita Holbrook
Tuesday December 15, 2011

The morning began with two presentations about funding. One was given by Ravi Sheth about International Centre for Theoretical Physics (ICTP) in Trieste, Italy; the other by Ernst van Groningen about International Science Programme of Uppsala University, Sweden. Dr. van Groningen’s presentation included a framework much like a spreadsheet of things to think about and include before writing a request for funding that I thought was particularly useful. His talk can be seen at http://www.ustream.tv/recorded/19135075 starting at about 15 minutes into the broadcast. The rest of the morning was dedicated to two talks by popular vote: one by Pedru Russo and Valerio Ribeiro about Evaluation Metrics, the other by Carolina Govender about Evaluation & Planning focusing on having evaluation at every step of project planning. The first talk starts at about five minutes into the stream and the second about twenty one minutes into the stream.

The unique activity of the workshop was the Unconference Topics. Over the workshop there was a place for participants to write down topics that they wanted to discuss that they thought were important. Then the participants voted on each topic, those that received the most votes won. There were five popular topics:
1. Citizen Science,
2. Mobile Planetaria,
3. Distance Education,
4. Managing Volunteers, and
5. Evidence for economic development resulting from astronomy.

I joined the last group. After much discussion we determined there were four steps that OAD should take
A. The OAD should host a webpage where links to previous reports can be accessed. For example, it is possible to get actual amounts that governments spend on astronomy, as well as organizations such as NASA in the USA produce annual reports by state of the impact of NASA funding.
B. OAD should analyze the metrics and evaluation methods used in these existing reports and
C. determine if we need to develop new metrics to suit OAD goals or simply use existing ones.
D. OAD should develop a team of people that can then go to astronomy facilities and assess the economic impact of each. Why would such a team be important? As with all forms of evaluation and assessment associated with projects, the funders want to know where their money went and that positive things have come out of their investment. I would like to know who benefits from astronomy dollars and how this breaks down demographically by gender and ethnicity. To do this OAD will have to partner with more than just astronomers.

My thoughts about the workshop are positive. It brought together stakeholders who were primarily interested in
1. Educating the public about astronomy,
2. Attracting young people to become astronomers, and
3. Increasing the number of university level astronomy classes and programs worldwide.

As a result, most of the attendees were astronomers. For the next workshop, I would like to see stakeholders from the towns nearest observatories, from government offices responsible for development, from the United Nations Development Program, and perhaps indigenous rights groups. The point of the workshop was to help shape the breadth and scope of the new Office of Astronomy for Development, it would be interesting to get input from these development stakeholders.

IAU Office of Astronomy Development Stakeholder’s Workshop – Day 2 December 14, 2011

Posted by International.Chair in : Astronomy and Astrophysics (ASTRO), History, Policy and Education (HPE), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment

by Dr. Jarita Holbrook
Tuesday December 14, 2011

The IAU Office of Astronomy for Development (OAD) has three established task forces. Tuesday December 13th, the workshop participants were assigned to task forces and met for the morning session. The goal was to brainstorm new ideas at the intersection of astronomy and development, but also to consider how to implement the published OAD Strategic Plan.

In the afternoon we had breakout sessions by regions. The divisions were Africa and the Middle East, Latin America, Asia Pacific, North America, and Europe. In these breakout sessions we were to examine our regional strengths and regional needs. North America consisted of representatives from the United States and Canada. Mexico joined the Latin America group.

As with other places worldwide North America has underserved populations that we would like to help such as First Nations/Native Americans, underrepresented groups, inner city underclass, etc. There were two tiers of needs, the first was to do things that astronomers normally do but reach these underserved communities. That is astronomy education and astronomy outreach, there are already many programs and networks to do these but these need to be extended to these communities. The second need was to consider social justice, cultural awareness, and egalitarian science in the context of astronomy for development.

This area was a fairly new way of thinking for astronomers and specific strategies, methods, actions and activities are left for the future. Unlike other parts of the world, North America is rich in resources including in plain old cash!

There are over 300 volunteers registered through the OAD website, few of these are from North America. Thus, there is a need to recruit volunteers. The North American group did not discuss WHERE an OAD node office should be located instead we focused on the issues discussed above.

OAD Workshop Participants Silvia Torres-Peimbert (Mexico), Postdoc Linda Strubbe (USA), and Graduate Student and NSBP Member Deatrick Foster (USA)

IAU Office of Astronomy Development Stakeholders’ Workshop – Day 1 December 13, 2011

Posted by International.Chair in : Astronomy and Astrophysics (ASTRO), History, Policy and Education (HPE), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment

by Dr. Jarita Holbrook
Tuesday December 13, 2011

The first day was an opportunity for stakeholders to provide quick descriptions of their activities and how they wish to contribute to OAD or make use of OAD. Each person was to have five minutes and two slides. All of the presentations were interesting. What I found informative was the reports from the various divisions within the International Astronomical Union: IAU Commission 46: Education and Building Capacity and IAU Commission 55: Communicating Astronomy with the Public. Both of these have several working groups doing work relevant to OAD. Where the American Astronomical Society is very active regarding the direct needs of research astronomers, these two IAU commissions have been far more active socially beyond the needs of astronomers.

There were several groups focused specifically in Africa: AIMS-Next Einstein, the African Astronomical Society, South African Astronomical Observatory, and there was an artist group doing work in the town closest to the Observatory in Sutherland, South Africa.

I was given two minutes to represent the National Society of Black Physicists. I shared the following:

  • 1. The National Society of Black Physicists is a global professional society based in the United States.

    2. We are active participants in the African Astronomical Society.

    3. We are interested in international scientific collaborations.

    4. We are interested in international exchanges.

    5. We are exploring forming a regional node in the United States. We aren’t the only ones there is also Steward Observatory and the Vatican Observatory.

    6. We have a long-term investment in the development of astronomy in Africa.

    7. We offer our services to help OAD anyway we can.

  • There are three established task forces:

    1. Astronomy for Universities and Research

    2. Astronomy for Children and Schools

    3. Astronomy for the Public

    Today we will be meeting within these task force to brainstorm, keeping in mind the OAD mission: To help further the use of astronomy as a tool for development by mobilizing the human and financial resources necessary in order to realize its scientific, technological and cultural benefits to society. OAD Director Kevin Govender reminds us that astronomy is not the silver bullet to solve all the problems fo the world. We are also to consider the economic impact of our activities.