jump to navigation

Dr. Kartik Sheth, ALMA, and SKA March 19, 2013

Posted by admin in : Astronomy and Astrophysics (ASTRO), Cosmology, Gravitation, and Relativity (CGR) , add a comment

by JC Holbrook

National Society of Black Physicists members Eric Wilcots and Kartik Sheth were part of a new initiative to foster radio astronomy collaborations with South African astronomers and students. Last week marked the official inauguration of ALMA, the Atacama Large Millimeter/Submillimeter Array, in the high altitude Atacama desert of Chile, South America. I was able to sit down with Dr. Sheth to discuss the broader issue of radio astronomy and South Africa.

“I think this celebration was the culmination of thirty years worth of work from a lot of different people. The inauguration of the array was a chance for us to celebrate how much hard work has gone into it.” Dr. Sheth said of the inauguration ceremony in Chile. “We started science operations September 30th of 2011. We have been collecting data for over two and a half years, because even with a small ALMA it is still the most powerful [millimeter/submillimeter] telescope in the world.”

Since ALMA is an array of dishes similar to the radio dishes of the Very Large Array in New Mexico, even during construction as each dish was put into place and connected, the astronomers were already using what was available to collect data. Thus, the months of science data collection with ALMA before the official inauguration.

I pointed out, “You were not even there!”

Dr. Sheth laughed, “Only the dignitaries were invited, so a lot of people from the political arena in the twenty-five plus countries that are part of ALMA. President Piñera inaugurated ALMA…For me it doesn’t mean much… but I’m kinda sad that I’m not there because I really wanted to be there. But I knew that I wasn’t going to be invited, so coming here [to South Africa] really was driven by the NASSP deadline for Master’s proposals.” NASSP is the National Astrophysics and Space Sciences Programme in South Africa. In 2010, I began writing a book about NASSP. The program is a dramatic success story about educating underrepresented groups in astrophysics and space sciences. NASSP include one honor year and a two year masters of science degree. Nearly all NASSP students are funded by the program.

Dr. Sheth explained, “The idea is to foster bridges between the faculty here that are taking on students who eventually want to work with MeerKat and SKA. But MeerKAT and SKA are not built, yet. So, what we would really like the faculty to do is to think about including radio data from existing telescopes and NRAO operates four of them.”

The SKA is currently under construction, yet the South African astronomy students need to learn everything about radio astronomy and the analysis of radio data. Dr. Sheth along with other American radio astronomers is here to encourage South African astronomers and their students the opportunity to learn by working with the existing facilities and their archival data. The four facilities are ALMA, the Robert C. Byrd Greenbank telescope a single dish in West Virginia, the Jansky Very Large Array (JVLA or EVLA) which is the enhanced VLA in New Mexico, and the Very Large Baseline Array (VLBA) which is spread across the Northern Hemisphere. Thus, the visit before the NASSP deadline for submitting Masters of Science thesis proposals. Dr. Sheth hopes that a few NASSP students will propose radio astronomy projects including using NRAO facilities for their Masters work.

According to Dr. Sheth the JVLA is the Northern Hemisphere equivalent of what MeerKat will be. MeerKat is the precursor to the SKA, the Square Kilometer Array.  It is a new state of the art radio observatory currently being built in South Africa. The SKA array itself will consist of 3000 dishes spread across nine African countries: South Africa, Namibia, Botswana, Mozambique, Madagascar, Mauritius, Zambia, Ghana, and Kenya. The SKA Africa headquarters are in Cape Town, South Africa, and they will be coordinating all of the African construction. A question I thought would be uppermost in the minds of South Africans was: Will ALMA be competition for SKA?

His response, “No, not at all. ALMA operates at higher frequencies than what the SKA will operate at. They are not looking at the same part of the electromagnetic spectrum but they will be looking at the same type of objects. EVLA is a mini version of SKA. With the SKA, it will be observing thermal emission and synchrotron emission from sources…” In an email he added, “We are looking at electrons energy as they cool around star forming regions or zip around magnetic fields. So you can get a real idea of the magnetic field that pervades the Milky Way and with the SKA across cosmic time. ALMA cannot really look at atomic gas unless its at very high red shift (i.e. the lines are red shifted into the regime that ALMA can observe) and only using atomic gas tracers like ionized carbon, nitrogen, or oxygen. ALMA cannot look at the atomic hydrogen gas which is emitting in the wavelengths that MeerKat and SKA will work at. So SKA & Meerkat are looking at the atomic gas from which molecular gas forms. And the molecular gas is what ALMA looks at which from stars form. And the stars are what HST and JWST look at. So it is a nice transition.  Together these are giving you the full picture of what the universe looks like. Additionally there is a lot about magnetic fields and transient phenomena — these are also MeerKat and SKA’s core strengths. For instance, these will be excellent instruments for looking at the timing of pulsars.”

Trying to put it altogether I asked, “So, anything that is hot and has electrons moving around will be able to be studied by SKA?”

Kartik Sheth clarified, “No, I wouldn’t call it ‘hot’. The atomic gas is quite cold as well. It is hotter than the molecular gas but not hot compared to stars.”

As a student of astronomy, I had always had a fascination with the connection between wavelengths of light or color, physical properties, chemistry, and celestial bodies. Planetary nebulae, which are mentioned in my last Vector blog, in visible light appear greenish in color. The color is the result of a specific atomic transition in the oxygen atom that occurs under very low density conditions. First the oxygen has to be ionized twice, i.e. it has to have lost two electrons, then it is through collisions that the transitions producing the characteristic green lines emit. A rule-of-thumb temperature for planetary nebulae is 10,000 degrees Kelvin. Thus, if there is a celestial body that appears ‘green’ in visible light you can conclude that it might include oxygen especially if it is a nebula which tends to have low density and it should be around 10,000 degrees Kelvin. Hydrogen is also found in planetary nebulae and the strongest transition line, known as H-alpha, occurs when its electron goes from an excited state to a less excited state releasing energy in the form of red light.

In the case of ALMA and SKA, they are probing two different sections of the electromagnetic spectrum similar to studying green light or red light. In the fullness of time, SKA will cover the same wavelengths and types of celestial bodies as the EVLA but focused on the Southern sky rather than the Northern, but also be more sensitive revealing more physical details. ALMA will add to our understanding of the same region of the sky but is studying different physical properties of celestial bodies. Both will add to our understanding of the Milky Way and the Universe.

NSBP members visit South Africa to strengthen ties March 15, 2013

Posted by admin in : Astronomy and Astrophysics (ASTRO), Cosmology, Gravitation, and Relativity (CGR), History, Policy and Education (HPE), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment

NSBP members Kartik Sheth and Eric Wilcots along with National Radio Astronomy Observatory (NRAO) astronomer Scott Ransom have been in South Africa to cement linkages for a NRAO’s faculty bridge program. NSBP, the South African Institute of Physics (SAIP), NRAO and others are working together on the science dimension of the US-South Africa Bilateral Strategic Dialogue.

The visit is intended to foster partnerships in multi-wavelength astronomy research.  Last week they had meetings with astronomers and cosmologists at University of Cape Town, University of Western Cape, SAAO, the SKA Africa Project Office and the African Institute of Mathematical Sciences (AIMS).  This week they will also meet with high energy astrophysicists at the Potchefstroom campus of North-West University, University of Johannesburg, and University of Witswatersrand, as well as astronomers at the North-West University campus in Mafikeng, and the Hartebeesthoek Radio Astronomy Observatory (HartRAO).

As South Africa builds a second NASSP site, teaching and research partnerships with NRAO will be beneficial on both sides of the Atlantic. NRAO currently operates four premier radio astronomy observatories: ALMA, JVLA, GBT and the VLBA.  NRAO is likely to also be a partner in helping to train scientists across the continent to be operators and users of the African VLBI Network (AVN). The AVN project consists of converting large, redundant telecommunications dishes across Africa for radio astronomy. The AVN will become part of the global VLBI network.

In addition to major radio astronomy successes, South Africa’s strategic plan for astronomy calls for its institutions to be active in multiple wavelengths including radio, optical, gamma/x-ray, and near IR. South Africa is the host of the Southern Africa Large Telescope (SALT), the largest optical telescope in the southern hemisphere. Wilcots is a member of the SALT board. South Africa is also supporting the Namibian bid to host the Cherenkov Telescope Array (CTA), the next generation success to the H.E.S.S telescope that has been in Namibia since 2002. Following an exchange at the 2011 NSBP conference, South Africa and the LIGO Collaboration have begun exploring opportunities in gravitational wave astronomy. Already LIGO and SAIP have convened a faculty workshop and a student summer school, both in Pretoria.

In a separate but simultaneous visit, Jim Gates participated in South Africa’s National Science Festival (SciFest), giving talks at several venues around the country on science policy and supersymmetry.  ScieFest was established in 1996 to promote the public awareness, understanding and appreciation of science, technology, engineering, mathematics and innovation. The main event in Grahamstown, held in March every year, attracts 72,000 visitors from South Africa, Botswana, Lesotho, Mozambique, Namibia, Swaziland and Zimbabwe. Several government departments, listed companies, museums, NGOs, research facilities, science centers, science councils, universities, as well as small, medium and micro enterprises, both from South Africa and abroad contribute to the success of the event.

Gates was on the same program as South Africa’s Minister of Science and Technology, Derek Hanekom.  Each discussed science and innovation policy and gave their perspectives on aligning science with national priorities. Additionally Gates participated in three formal policy meetings, including one with Simphiwe Duma, CEO of the Technology Innovation Agency, and two more informal policy meetings.  In a lecture at the University of South Africa (UNISA) he and Dr. Rob Adam, former head to South Africa’s National Research Foundation, spoke on the efficacy of policy-formation surrounding STEM fields and the innovation cycle.

In other events around the country Gates met 45 students spanning the 8th through 11th grade levels at the Mae Jemison Science Reading Room in the Mamelodi township.  At Nelson Mandela Metropolitan University and the University of Johannesburg he gave talks on the strange mathematical objects found in the equations of supersymmetry.

These meetings and exchanges involving NSBP and South African colleagues are all part of the evolution from ideas put into motion by the Nobel Laureate, Abdus Salaam, and the founders of the Edward Bouchet-Abdus Salaam Institute (EBASI). Over a decade ago former NSBP president, Charles McGruder, traveled to South Africa to explore possible linkages between astronomers.  That visit led to Khotso Mokhele’s participation in the 2004 NSBP conference.  At the time he was the head of South Africa’s National Research Foundation. Later NSBP won a grant from the WK Kellogg Foundation to support NSBP’s participation the NASSP program. In the year’s since, NSBP has partnered with SAIP on a number of projects, and the relationship was codified in at MOU signed at the 2011 NSBP conference and witnessed by Minister Naledi Pandor.  The relationships between NSBP, SAIP as well as colleagues across the entire continent continue to evolve and vistas are opening up in the realms of geophysics, biophysics and medical physics, nuclear and particle physics, mathematical and computational physics, as well as physics education at all levels.

Unfinished Business in Astronomy March 11, 2013

Posted by admin in : Astronomy and Astrophysics (ASTRO) , add a comment

JC Holbrook

My master’s thesis in astronomy at San Diego State University focused on the electron temperature structure of the ionized gas of planetary nebulae. I focused on two planetary nebulae: NGC 6572 and NGC 6543. I observed using the one meter telescope at Mt. Laguna Observatory with a CCD detector. Planetary nebula are created as low mass stars throw off their atmosphere during their transition to white dwarfs. My observations and analysis of NGC 6572 revealed a knot of high temperature gas well away from but connected to the nebula. I could not explain what the knot was but submitted the paper in 1992 to ApJ with my advisor Theodore Daub. The referee reports insisted that we take spectra of the knot. JPL’s Trina Ray took spectra but we still could not identify the hot knot. The project was left behind as I left SDSU for NASA and a doctorate. However, a week ago I looked up images of NGC 6572 and got a big surprise! The Hubble Space Telescope image showed a far bigger nebula than what we could detect twenty years ago! Though it has been several years, looking at the contours I estimate that the hot spot I found, which at that point was at the edge of the nebula, I have marked with a circle in the second image. The structure of NGC 6572 is much more complicated than what I was working with and it is clear that some of the assumptions that went into the temperature would need to be updated to fully determine if the knot was indeed as hot as calculated. Certainly, some eager young astronomy student has already unraveled this bit of unfinished business!

The First Telescope Has Arrived for the Total Solar Eclipse in Cairns and “Black Sun” November 11, 2012

Posted by admin in : Astronomy and Astrophysics (ASTRO), Earth and Planetary Systems Sciences (EPSS) , add a comment

by JC Holbrook

Dr. Alphonse Sterling arrived safely in Cairns with telescope, mount, filters, cameras, and a suitcase. His excess baggage fees were unmentionable. The blue case is the body of the telescope. Alphonse is staying about 30 minutes to the west of Cairns in the Trinity Beach area in a very swank three bedroom apartment with ocean views. He will be sharing the apartment with scientific teammembers students Amy Steele and Roderick Gray.

In preparation for the eclipse, Alphonse has to create a ‘flat’ image as part of the calibration of the flaws in the telescope. When doing traditional night observing at an observatory, flats are taken of the dome. That is, before you start observing you put diffuse light onto the dome of the telescope and take a series of images. What is revealed is any specs of dust in the optics and other flaws. Next, the astronomer would go on to observe the celestial bodies and at dawn take another series of flats. When processing the images of the celestial bodies these flats would be used to remove the optical flaws thus flattening the images. This way what you have is just what is found in space not some artifact left by the optics of the telescope.

When doing observations of the Sun, daytime observing, creating a flat is not so simple. Alphonse has experimented with multiple different light sources to determine which is the best for creating a good flat.
What he found is he has to rig something up himself. That meant that we had to go to the hardware store to find the parts he needed!

After a long search we found: exacto knife, white cardboard, LCD flashlight, masking tape, electrical switch, compass. He had his own wire to create an external switch for his new light source. Over the next couple of days he will be putting everything together. I can’t wait to see what the final device will look like!

Be part of “Black Sun” donate today at
https://www.austinfilm.org/film-black-sun.

NSBP members descend upon Australia for more than just a total solar eclipse November 2, 2012

Posted by admin in : Astronomy and Astrophysics (ASTRO), Cosmology, Gravitation, and Relativity (CGR), Earth and Planetary Systems Sciences (EPSS), History, Policy and Education (HPE) , add a comment

The Total Solar Eclipse is just days away and will cut a path through the South Pacific. This week sees the start of NSBP members traveling to exotic locations to do more than bask in the unique environment of totality. NSBP members will meet in Cairns, Australia, which is predicted to have the best eclipse viewing. Dr. Hakeem Oluseyi of the Florida Institute of Technology will be using the eclipse to study the lower atmosphere of the Sun. He will be working with a group of students and telescopes and cameras to capture scientific images that will inform his research. Dr. Alphonse Sterling, who has yet to attend an NSBP meeting, of NASA Marshall Space Flight Center will be flying in from his assignment in Tokyo, Japan. He too will be taking images of the lower atmosphere of the Sun for his scientific research.

The opportunity to see two African American astrophysicists leading research teams and doing their science was too much for NSBP member Dr. Jarita Holbrook.  She is making a film, Black Sun, to chronicle this event. After a successful Kickstarter campaign, Dr. Holbrook and her documentary film team from KZP Productions began by filming Dr. Sterling during the May annular eclipse in Tokyo. After an amazing experience, an 8-minute short film was made chronicling the event. Now it is time to bring Hakeem into the picture!

Black Sun is still seeking funding to complete this ground-breaking film project. Donations are tax deductable via . Help Jarita to inspire the next generation of African American astrophysicists by donating today – no donation is too small!  Jarita is on her way today to lay the groundwork for the documentary. Follow her tweets @astroholbrook.

Dr. Alphonse Sterling making observations

Dr. Alphonse Sterling analyzing data

Interview with Tony Beasley: New director of the National Radio Astronomy Observatory August 17, 2012

Posted by admin in : Astronomy and Astrophysics (ASTRO), Earth and Planetary Systems Sciences (EPSS), History, Policy and Education (HPE), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment

Last February the Associated Universities, Inc. appointed Dr. Anthony Beasley as the next NRAO director. Originally from Australia, Beasley has had a distinguished career in radio astronomy. He has played a key role in the planning and commissioning of several major instruments and facilities. In his most recent appointment his skills were used in ecological research, where those colleagues too have large networks of major scientific facilities. In a wide-ranging interview with Waves and Packets, Beasley discusses the future of NRAO and of radio astronomy in general, global collaborations like the Square Kilometer Array and VLBI, the U.S. astronomy portfolio in tough budgetary times and the promise of citizen-science in making profound discoveries.

Listen to interview

NSBP Member, Hakeem Oluseyi, selected to be a TEDGlobal 2012 Fellow March 31, 2012

Posted by admin in : Astronomy and Astrophysics (ASTRO), Cosmology, Gravitation, and Relativity (CGR), Earth and Planetary Systems Sciences (EPSS), History, Policy and Education (HPE), Photonics and Optics (POP), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment
Florida Institute of Technology professor, Hakeem Oluseyi, has been selected to be 2012 TED Global Fellow.  He will participate in the TED conference in Edinburgh, Scotland, June 25-29.  Dr. Oluseyi is an astrophysicist, inventor and science educator whose research focuses on measuring the structure and evolution of the Milky Way galaxy and characterizing new planetary systems.  Oluseyi has lectured widely in the US and Africa.  He was one of the founding members of the African Astronomical Society and is currently an officer of the National Society of Black Physicists.  TED is a nonprofit devoted to Ideas Worth Spreading. It started out (in 1984) as a conference bringing together people from three worlds: Technology, Entertainment, Design.  Past TED Fellows include CERN’s Bilge Demirkoz, Harvard’s Michelle Borkin, and NASA’s Lucianne Walkowicz.
 
Dr. Hakeem M. Oluseyi is an astrophysicist with research interests in the fields of solar and stellar variability, Galactic structure, and technology development.   After receiving his B.S. degrees in Physics & Mathematics from Tougaloo College in 1991, he went on earn his Ph.D. at Stanford University with an award winning dissertation, "Development of a Global Model of the Solar Atmosphere with an Emphasis on the Solar Transition Region."  His Ph.D. adviser was legendary astrophysicist, Arthur B. C.  Walker.
 
During his tenure at Stanford, Oluseyi participated in the pioneering application of normal-incidence, EUV multilayer optics to astronomical observing as a member of the Stanford team that flew the Multi-Spectral Solar Telescope Array (MSSTA) in a series of rocket flights from 1987 to 1994.  This technology has now become the standard for solar EUV imaging.  He was a major contributor to the analyses that illustrated flows in solar polar plumes for the first time and also showed for the first time that plumes were not the sources of the high-speed solar wind as was believed.  He also led the effort that discovered the structures responsible for the bulk of solar upper transition region (plasmas in the temperature range from 0.1 – 1.0 MK) emission and ultimately presented a new model for the structure of the Sun's hot atmosphere. 
 
After leaving Stanford in 1999 Dr. Oluseyi joined the technical staff at Applied Materials, Inc. where he invented several new patented processes for manufacturing next-generation, sub 0.1-micron, refractory metal transistor gate electrodes on very thin traditional and high-k dielectrics.  He also developed patented processes for in-situ spectroscopic process control and diagnostics, facilitating elimination of test wafers in semiconductor manufacturing.  This work has resulted in 7 U.S.  patents and 4 E.U.  patent.
 
In 2001 Dr. Oluseyi joined the staff of Lawrence Berkeley National Laboratory (LBNL) as an Ernest O. Lawrence Postdoctoral Fellow.  There he established a new laboratory, the CCD Production Facility, and developed new techniques for characterizing and packaging large-format, thick (300 micron), p-channel charge coupled devices (CCDs).  As a member of the SuperNova Acceleration Probe (SNAP) satellite collaboration and the Supernova Cosmology Project at LBNL, Dr. Oluseyi participated in the development of high-resistivity p-channel CCDs and performed spectroscopic observation of supernovae utilizing the Shane Spectrometer on the Lick Observatory's Nickel 3-m telescope. 
 
In January 2004 Dr. Oluseyi joined the physics faculty of The University of Alabama in Huntsville where he continued his research in solar physics, cosmology, and technology development but also focused on increasing the number of Black astrophysicists.   His efforts have thus far resulted in producing one of only two Black female solar physicists working in the U.S., mentoring a total of three African American graduate students, and six African graduate students. 
 
Oluseyi also began working extensively in Africa beginning in 2002.  He visited hundreds of schools and worked directly with thousands of students in Swaziland, South Africa, Zambia, Tanzania, and Kenya as a member of Cosmos Education in the years 2002, 2003, 2004.  In 2005 he began working with the South African Astronomical Observatory.  In 2006 he was the co-organizer of the 2006 Total Solar Eclipse Conference on Science and Culture.  Also in 2006, he co-founded a thriving Hands-On Universe branch in Nairobi, Kenya.  In subsequent years he worked with other teams dedicated to improving science research in Africa including the 2007 International Heliophysical Year conference in Addis Ababa, Ethiopia and the First Middle-East Africa, Regional IAU Meeting in Cairo, Egypt in 2008. 
 

 
Also in 2008 he began working with at-risk graduate students in the Extended Honors Program at the University of Cape Town (UCT) in collaboration with the South African Astronomical Observatory (SAAO) and the National Society of Black Physicists.  Oluseyi lectured physics and cosmology to UCT students in 2008 and 2009.  In 2010, he lectured and mentored students in the SAAO/UCT Astronomy Winter School. 
 
During 2010 and 2011, Oluseyi played a central role in establishing the African Astronomical Society (AfAS), the first continent-wide organization of African astronomy professionals.  He was a participant in the IAU-sponsored meeting of the Interim Leadership Group for forming the AfAS, and subsequently served as the Interim President of the AfAS until its official launch in April 2011. 
 
In May 2011, Oluseyi conducted a 6-city tour of South Africa as a Speaker & Specialist for the U.S. State Department.  During his visit he visited dozens of schools, museums and science centers, working with thousands of students, and a multitude of teachers, education administrators, and researchers.  In fall 2011 Oluseyi and professors at the University of Johannesburg won a grant from the U.S. State Department to found a Hands-On Universe branch in Soweto, South Africa. 
 
Oluseyi plans to return to South Africa to work with UCT students including leading observational research projects at the SAAO observatories in Sutherland.  Oluseyi also has ongoing research programs in collaboration with SAAO and University of Johannesburg scientists.
 
In January 2007 Dr. Oluseyi was invited to join the Department of Physics & Space Sciences at the Florida Institute of Technology.  He has since established a large research group that studies solar variability using space-based instruments, studies Galactic structure and stellar properties using periodic variable stars as probes, and is measuring the characteristics of extrasolar planetary systems using data from the LINEAR and KELT surveys and meter-class telescopes in North America and Chile.  He is a member of the Variables & Transients science collaboration for the Large Synoptic Survey Telescope.  Oluseyi recently founded the first observational astronomy consortium consisting primarily of minority-serving colleges and universities.
 

 
Dr. Oluseyi has won several honors including selection as a TED Global Fellow (2012), as a Speaker & Specialist for the U.S.  State Department, Outstanding Technical Innovation and Best Paper at the NSBE Aerospace Conference (2010), NASA Earth/Sun Science New Investigator fellow (2006), the 2006 Technical Achiever of the Year in Physics by the National Technical Association, selection as the Gordon & Betty Moore Foundation Astrophysics Research Fellow (2003-2005), and as an E. O. Lawrence Astrophysics Research Fellow (2001-2004), and winner of the NSBP Distinguished Dissertation award (2002).
 

 

Statement by South African Institute of Physics on the KAT-7 Milestone March 20, 2012

Posted by International.Chair in : Astronomy and Astrophysics (ASTRO) , 3comments

“The South African Institute of Physics is very pleased to see the announcement of the scientific commissioning of a new and exciting mode of the KAT-7 radio telescope, the precursor to the more powerful MeerKAT telescope now under construction. The first images represent high resolution velocity measurements of hydrogen gas clouds within a nearby galaxy, which is a remarkable early achievement. Such measurements contribute to the most fundamental questions in physics, related to the existence of Dark Matter and possible new models for gravity. These are exciting times for physics and astronomy in South Africa. With the Southern African Large Telescope, the KAT-7 and MeerKAT arrays, the HESS facility in Namibia, and with our colleagues on the continent and around the world, Southern Africa has already achieved a multi-wavelength capability in astronomy that is world-class. We are grateful for the support our government has given to these endeavors. This has led to a massive growth in globally competitive research capacity, which is in fact spreading throughout Africa. We look boldly to the future not only for the scientific results that will be achieved, but the overall public benefits from spin-off innovation and high level capacity building that these projects will continue to bring.” – SAIP President.

IAU Office of Astronomy Development Stakeholder’s Workshop – Day 3 December 17, 2011

Posted by International.Chair in : Astronomy and Astrophysics (ASTRO), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment

by Dr. Jarita Holbrook
Tuesday December 15, 2011

The morning began with two presentations about funding. One was given by Ravi Sheth about International Centre for Theoretical Physics (ICTP) in Trieste, Italy; the other by Ernst van Groningen about International Science Programme of Uppsala University, Sweden. Dr. van Groningen’s presentation included a framework much like a spreadsheet of things to think about and include before writing a request for funding that I thought was particularly useful. His talk can be seen at http://www.ustream.tv/recorded/19135075 starting at about 15 minutes into the broadcast. The rest of the morning was dedicated to two talks by popular vote: one by Pedru Russo and Valerio Ribeiro about Evaluation Metrics, the other by Carolina Govender about Evaluation & Planning focusing on having evaluation at every step of project planning. The first talk starts at about five minutes into the stream and the second about twenty one minutes into the stream.

The unique activity of the workshop was the Unconference Topics. Over the workshop there was a place for participants to write down topics that they wanted to discuss that they thought were important. Then the participants voted on each topic, those that received the most votes won. There were five popular topics:
1. Citizen Science,
2. Mobile Planetaria,
3. Distance Education,
4. Managing Volunteers, and
5. Evidence for economic development resulting from astronomy.

I joined the last group. After much discussion we determined there were four steps that OAD should take
A. The OAD should host a webpage where links to previous reports can be accessed. For example, it is possible to get actual amounts that governments spend on astronomy, as well as organizations such as NASA in the USA produce annual reports by state of the impact of NASA funding.
B. OAD should analyze the metrics and evaluation methods used in these existing reports and
C. determine if we need to develop new metrics to suit OAD goals or simply use existing ones.
D. OAD should develop a team of people that can then go to astronomy facilities and assess the economic impact of each. Why would such a team be important? As with all forms of evaluation and assessment associated with projects, the funders want to know where their money went and that positive things have come out of their investment. I would like to know who benefits from astronomy dollars and how this breaks down demographically by gender and ethnicity. To do this OAD will have to partner with more than just astronomers.

My thoughts about the workshop are positive. It brought together stakeholders who were primarily interested in
1. Educating the public about astronomy,
2. Attracting young people to become astronomers, and
3. Increasing the number of university level astronomy classes and programs worldwide.

As a result, most of the attendees were astronomers. For the next workshop, I would like to see stakeholders from the towns nearest observatories, from government offices responsible for development, from the United Nations Development Program, and perhaps indigenous rights groups. The point of the workshop was to help shape the breadth and scope of the new Office of Astronomy for Development, it would be interesting to get input from these development stakeholders.

IAU Office of Astronomy Development Stakeholder’s Workshop – Day 2 December 14, 2011

Posted by International.Chair in : Astronomy and Astrophysics (ASTRO), History, Policy and Education (HPE), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment

by Dr. Jarita Holbrook
Tuesday December 14, 2011

The IAU Office of Astronomy for Development (OAD) has three established task forces. Tuesday December 13th, the workshop participants were assigned to task forces and met for the morning session. The goal was to brainstorm new ideas at the intersection of astronomy and development, but also to consider how to implement the published OAD Strategic Plan.

In the afternoon we had breakout sessions by regions. The divisions were Africa and the Middle East, Latin America, Asia Pacific, North America, and Europe. In these breakout sessions we were to examine our regional strengths and regional needs. North America consisted of representatives from the United States and Canada. Mexico joined the Latin America group.

As with other places worldwide North America has underserved populations that we would like to help such as First Nations/Native Americans, underrepresented groups, inner city underclass, etc. There were two tiers of needs, the first was to do things that astronomers normally do but reach these underserved communities. That is astronomy education and astronomy outreach, there are already many programs and networks to do these but these need to be extended to these communities. The second need was to consider social justice, cultural awareness, and egalitarian science in the context of astronomy for development.

This area was a fairly new way of thinking for astronomers and specific strategies, methods, actions and activities are left for the future. Unlike other parts of the world, North America is rich in resources including in plain old cash!

There are over 300 volunteers registered through the OAD website, few of these are from North America. Thus, there is a need to recruit volunteers. The North American group did not discuss WHERE an OAD node office should be located instead we focused on the issues discussed above.

OAD Workshop Participants Silvia Torres-Peimbert (Mexico), Postdoc Linda Strubbe (USA), and Graduate Student and NSBP Member Deatrick Foster (USA)