jump to navigation

Dr. Kartik Sheth, ALMA, and SKA March 19, 2013

Posted by admin in : Astronomy and Astrophysics (ASTRO), Cosmology, Gravitation, and Relativity (CGR) , add a comment

by JC Holbrook

National Society of Black Physicists members Eric Wilcots and Kartik Sheth were part of a new initiative to foster radio astronomy collaborations with South African astronomers and students. Last week marked the official inauguration of ALMA, the Atacama Large Millimeter/Submillimeter Array, in the high altitude Atacama desert of Chile, South America. I was able to sit down with Dr. Sheth to discuss the broader issue of radio astronomy and South Africa.

“I think this celebration was the culmination of thirty years worth of work from a lot of different people. The inauguration of the array was a chance for us to celebrate how much hard work has gone into it.” Dr. Sheth said of the inauguration ceremony in Chile. “We started science operations September 30th of 2011. We have been collecting data for over two and a half years, because even with a small ALMA it is still the most powerful [millimeter/submillimeter] telescope in the world.”

Since ALMA is an array of dishes similar to the radio dishes of the Very Large Array in New Mexico, even during construction as each dish was put into place and connected, the astronomers were already using what was available to collect data. Thus, the months of science data collection with ALMA before the official inauguration.

I pointed out, “You were not even there!”

Dr. Sheth laughed, “Only the dignitaries were invited, so a lot of people from the political arena in the twenty-five plus countries that are part of ALMA. President Piñera inaugurated ALMA…For me it doesn’t mean much… but I’m kinda sad that I’m not there because I really wanted to be there. But I knew that I wasn’t going to be invited, so coming here [to South Africa] really was driven by the NASSP deadline for Master’s proposals.” NASSP is the National Astrophysics and Space Sciences Programme in South Africa. In 2010, I began writing a book about NASSP. The program is a dramatic success story about educating underrepresented groups in astrophysics and space sciences. NASSP include one honor year and a two year masters of science degree. Nearly all NASSP students are funded by the program.

Dr. Sheth explained, “The idea is to foster bridges between the faculty here that are taking on students who eventually want to work with MeerKat and SKA. But MeerKAT and SKA are not built, yet. So, what we would really like the faculty to do is to think about including radio data from existing telescopes and NRAO operates four of them.”

The SKA is currently under construction, yet the South African astronomy students need to learn everything about radio astronomy and the analysis of radio data. Dr. Sheth along with other American radio astronomers is here to encourage South African astronomers and their students the opportunity to learn by working with the existing facilities and their archival data. The four facilities are ALMA, the Robert C. Byrd Greenbank telescope a single dish in West Virginia, the Jansky Very Large Array (JVLA or EVLA) which is the enhanced VLA in New Mexico, and the Very Large Baseline Array (VLBA) which is spread across the Northern Hemisphere. Thus, the visit before the NASSP deadline for submitting Masters of Science thesis proposals. Dr. Sheth hopes that a few NASSP students will propose radio astronomy projects including using NRAO facilities for their Masters work.

According to Dr. Sheth the JVLA is the Northern Hemisphere equivalent of what MeerKat will be. MeerKat is the precursor to the SKA, the Square Kilometer Array.  It is a new state of the art radio observatory currently being built in South Africa. The SKA array itself will consist of 3000 dishes spread across nine African countries: South Africa, Namibia, Botswana, Mozambique, Madagascar, Mauritius, Zambia, Ghana, and Kenya. The SKA Africa headquarters are in Cape Town, South Africa, and they will be coordinating all of the African construction. A question I thought would be uppermost in the minds of South Africans was: Will ALMA be competition for SKA?

His response, “No, not at all. ALMA operates at higher frequencies than what the SKA will operate at. They are not looking at the same part of the electromagnetic spectrum but they will be looking at the same type of objects. EVLA is a mini version of SKA. With the SKA, it will be observing thermal emission and synchrotron emission from sources…” In an email he added, “We are looking at electrons energy as they cool around star forming regions or zip around magnetic fields. So you can get a real idea of the magnetic field that pervades the Milky Way and with the SKA across cosmic time. ALMA cannot really look at atomic gas unless its at very high red shift (i.e. the lines are red shifted into the regime that ALMA can observe) and only using atomic gas tracers like ionized carbon, nitrogen, or oxygen. ALMA cannot look at the atomic hydrogen gas which is emitting in the wavelengths that MeerKat and SKA will work at. So SKA & Meerkat are looking at the atomic gas from which molecular gas forms. And the molecular gas is what ALMA looks at which from stars form. And the stars are what HST and JWST look at. So it is a nice transition.  Together these are giving you the full picture of what the universe looks like. Additionally there is a lot about magnetic fields and transient phenomena — these are also MeerKat and SKA’s core strengths. For instance, these will be excellent instruments for looking at the timing of pulsars.”

Trying to put it altogether I asked, “So, anything that is hot and has electrons moving around will be able to be studied by SKA?”

Kartik Sheth clarified, “No, I wouldn’t call it ‘hot’. The atomic gas is quite cold as well. It is hotter than the molecular gas but not hot compared to stars.”

As a student of astronomy, I had always had a fascination with the connection between wavelengths of light or color, physical properties, chemistry, and celestial bodies. Planetary nebulae, which are mentioned in my last Vector blog, in visible light appear greenish in color. The color is the result of a specific atomic transition in the oxygen atom that occurs under very low density conditions. First the oxygen has to be ionized twice, i.e. it has to have lost two electrons, then it is through collisions that the transitions producing the characteristic green lines emit. A rule-of-thumb temperature for planetary nebulae is 10,000 degrees Kelvin. Thus, if there is a celestial body that appears ‘green’ in visible light you can conclude that it might include oxygen especially if it is a nebula which tends to have low density and it should be around 10,000 degrees Kelvin. Hydrogen is also found in planetary nebulae and the strongest transition line, known as H-alpha, occurs when its electron goes from an excited state to a less excited state releasing energy in the form of red light.

In the case of ALMA and SKA, they are probing two different sections of the electromagnetic spectrum similar to studying green light or red light. In the fullness of time, SKA will cover the same wavelengths and types of celestial bodies as the EVLA but focused on the Southern sky rather than the Northern, but also be more sensitive revealing more physical details. ALMA will add to our understanding of the same region of the sky but is studying different physical properties of celestial bodies. Both will add to our understanding of the Milky Way and the Universe.

Unfinished Business in Astronomy March 11, 2013

Posted by admin in : Astronomy and Astrophysics (ASTRO) , add a comment

JC Holbrook

My master’s thesis in astronomy at San Diego State University focused on the electron temperature structure of the ionized gas of planetary nebulae. I focused on two planetary nebulae: NGC 6572 and NGC 6543. I observed using the one meter telescope at Mt. Laguna Observatory with a CCD detector. Planetary nebula are created as low mass stars throw off their atmosphere during their transition to white dwarfs. My observations and analysis of NGC 6572 revealed a knot of high temperature gas well away from but connected to the nebula. I could not explain what the knot was but submitted the paper in 1992 to ApJ with my advisor Theodore Daub. The referee reports insisted that we take spectra of the knot. JPL’s Trina Ray took spectra but we still could not identify the hot knot. The project was left behind as I left SDSU for NASA and a doctorate. However, a week ago I looked up images of NGC 6572 and got a big surprise! The Hubble Space Telescope image showed a far bigger nebula than what we could detect twenty years ago! Though it has been several years, looking at the contours I estimate that the hot spot I found, which at that point was at the edge of the nebula, I have marked with a circle in the second image. The structure of NGC 6572 is much more complicated than what I was working with and it is clear that some of the assumptions that went into the temperature would need to be updated to fully determine if the knot was indeed as hot as calculated. Certainly, some eager young astronomy student has already unraveled this bit of unfinished business!

The First Telescope Has Arrived for the Total Solar Eclipse in Cairns and “Black Sun” November 11, 2012

Posted by admin in : Astronomy and Astrophysics (ASTRO), Earth and Planetary Systems Sciences (EPSS) , add a comment

by JC Holbrook

Dr. Alphonse Sterling arrived safely in Cairns with telescope, mount, filters, cameras, and a suitcase. His excess baggage fees were unmentionable. The blue case is the body of the telescope. Alphonse is staying about 30 minutes to the west of Cairns in the Trinity Beach area in a very swank three bedroom apartment with ocean views. He will be sharing the apartment with scientific teammembers students Amy Steele and Roderick Gray.

In preparation for the eclipse, Alphonse has to create a ‘flat’ image as part of the calibration of the flaws in the telescope. When doing traditional night observing at an observatory, flats are taken of the dome. That is, before you start observing you put diffuse light onto the dome of the telescope and take a series of images. What is revealed is any specs of dust in the optics and other flaws. Next, the astronomer would go on to observe the celestial bodies and at dawn take another series of flats. When processing the images of the celestial bodies these flats would be used to remove the optical flaws thus flattening the images. This way what you have is just what is found in space not some artifact left by the optics of the telescope.

When doing observations of the Sun, daytime observing, creating a flat is not so simple. Alphonse has experimented with multiple different light sources to determine which is the best for creating a good flat.
What he found is he has to rig something up himself. That meant that we had to go to the hardware store to find the parts he needed!

After a long search we found: exacto knife, white cardboard, LCD flashlight, masking tape, electrical switch, compass. He had his own wire to create an external switch for his new light source. Over the next couple of days he will be putting everything together. I can’t wait to see what the final device will look like!

Be part of “Black Sun” donate today at
https://www.austinfilm.org/film-black-sun.

NSBP members descend upon Australia for more than just a total solar eclipse November 2, 2012

Posted by admin in : Astronomy and Astrophysics (ASTRO), Cosmology, Gravitation, and Relativity (CGR), Earth and Planetary Systems Sciences (EPSS), History, Policy and Education (HPE) , add a comment

The Total Solar Eclipse is just days away and will cut a path through the South Pacific. This week sees the start of NSBP members traveling to exotic locations to do more than bask in the unique environment of totality. NSBP members will meet in Cairns, Australia, which is predicted to have the best eclipse viewing. Dr. Hakeem Oluseyi of the Florida Institute of Technology will be using the eclipse to study the lower atmosphere of the Sun. He will be working with a group of students and telescopes and cameras to capture scientific images that will inform his research. Dr. Alphonse Sterling, who has yet to attend an NSBP meeting, of NASA Marshall Space Flight Center will be flying in from his assignment in Tokyo, Japan. He too will be taking images of the lower atmosphere of the Sun for his scientific research.

The opportunity to see two African American astrophysicists leading research teams and doing their science was too much for NSBP member Dr. Jarita Holbrook.  She is making a film, Black Sun, to chronicle this event. After a successful Kickstarter campaign, Dr. Holbrook and her documentary film team from KZP Productions began by filming Dr. Sterling during the May annular eclipse in Tokyo. After an amazing experience, an 8-minute short film was made chronicling the event. Now it is time to bring Hakeem into the picture!

Black Sun is still seeking funding to complete this ground-breaking film project. Donations are tax deductable via . Help Jarita to inspire the next generation of African American astrophysicists by donating today – no donation is too small!  Jarita is on her way today to lay the groundwork for the documentary. Follow her tweets @astroholbrook.

Dr. Alphonse Sterling making observations

Dr. Alphonse Sterling analyzing data

IAU Office of Astronomy Development Stakeholder’s Workshop – Day 3 December 17, 2011

Posted by International.Chair in : Astronomy and Astrophysics (ASTRO), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment

by Dr. Jarita Holbrook
Tuesday December 15, 2011

The morning began with two presentations about funding. One was given by Ravi Sheth about International Centre for Theoretical Physics (ICTP) in Trieste, Italy; the other by Ernst van Groningen about International Science Programme of Uppsala University, Sweden. Dr. van Groningen’s presentation included a framework much like a spreadsheet of things to think about and include before writing a request for funding that I thought was particularly useful. His talk can be seen at http://www.ustream.tv/recorded/19135075 starting at about 15 minutes into the broadcast. The rest of the morning was dedicated to two talks by popular vote: one by Pedru Russo and Valerio Ribeiro about Evaluation Metrics, the other by Carolina Govender about Evaluation & Planning focusing on having evaluation at every step of project planning. The first talk starts at about five minutes into the stream and the second about twenty one minutes into the stream.

The unique activity of the workshop was the Unconference Topics. Over the workshop there was a place for participants to write down topics that they wanted to discuss that they thought were important. Then the participants voted on each topic, those that received the most votes won. There were five popular topics:
1. Citizen Science,
2. Mobile Planetaria,
3. Distance Education,
4. Managing Volunteers, and
5. Evidence for economic development resulting from astronomy.

I joined the last group. After much discussion we determined there were four steps that OAD should take
A. The OAD should host a webpage where links to previous reports can be accessed. For example, it is possible to get actual amounts that governments spend on astronomy, as well as organizations such as NASA in the USA produce annual reports by state of the impact of NASA funding.
B. OAD should analyze the metrics and evaluation methods used in these existing reports and
C. determine if we need to develop new metrics to suit OAD goals or simply use existing ones.
D. OAD should develop a team of people that can then go to astronomy facilities and assess the economic impact of each. Why would such a team be important? As with all forms of evaluation and assessment associated with projects, the funders want to know where their money went and that positive things have come out of their investment. I would like to know who benefits from astronomy dollars and how this breaks down demographically by gender and ethnicity. To do this OAD will have to partner with more than just astronomers.

My thoughts about the workshop are positive. It brought together stakeholders who were primarily interested in
1. Educating the public about astronomy,
2. Attracting young people to become astronomers, and
3. Increasing the number of university level astronomy classes and programs worldwide.

As a result, most of the attendees were astronomers. For the next workshop, I would like to see stakeholders from the towns nearest observatories, from government offices responsible for development, from the United Nations Development Program, and perhaps indigenous rights groups. The point of the workshop was to help shape the breadth and scope of the new Office of Astronomy for Development, it would be interesting to get input from these development stakeholders.

IAU Office of Astronomy Development Stakeholder’s Workshop – Day 2 December 14, 2011

Posted by International.Chair in : Astronomy and Astrophysics (ASTRO), History, Policy and Education (HPE), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment

by Dr. Jarita Holbrook
Tuesday December 14, 2011

The IAU Office of Astronomy for Development (OAD) has three established task forces. Tuesday December 13th, the workshop participants were assigned to task forces and met for the morning session. The goal was to brainstorm new ideas at the intersection of astronomy and development, but also to consider how to implement the published OAD Strategic Plan.

In the afternoon we had breakout sessions by regions. The divisions were Africa and the Middle East, Latin America, Asia Pacific, North America, and Europe. In these breakout sessions we were to examine our regional strengths and regional needs. North America consisted of representatives from the United States and Canada. Mexico joined the Latin America group.

As with other places worldwide North America has underserved populations that we would like to help such as First Nations/Native Americans, underrepresented groups, inner city underclass, etc. There were two tiers of needs, the first was to do things that astronomers normally do but reach these underserved communities. That is astronomy education and astronomy outreach, there are already many programs and networks to do these but these need to be extended to these communities. The second need was to consider social justice, cultural awareness, and egalitarian science in the context of astronomy for development.

This area was a fairly new way of thinking for astronomers and specific strategies, methods, actions and activities are left for the future. Unlike other parts of the world, North America is rich in resources including in plain old cash!

There are over 300 volunteers registered through the OAD website, few of these are from North America. Thus, there is a need to recruit volunteers. The North American group did not discuss WHERE an OAD node office should be located instead we focused on the issues discussed above.

OAD Workshop Participants Silvia Torres-Peimbert (Mexico), Postdoc Linda Strubbe (USA), and Graduate Student and NSBP Member Deatrick Foster (USA)

IAU Office of Astronomy Development Stakeholders’ Workshop – Day 1 December 13, 2011

Posted by International.Chair in : Astronomy and Astrophysics (ASTRO), History, Policy and Education (HPE), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment

by Dr. Jarita Holbrook
Tuesday December 13, 2011

The first day was an opportunity for stakeholders to provide quick descriptions of their activities and how they wish to contribute to OAD or make use of OAD. Each person was to have five minutes and two slides. All of the presentations were interesting. What I found informative was the reports from the various divisions within the International Astronomical Union: IAU Commission 46: Education and Building Capacity and IAU Commission 55: Communicating Astronomy with the Public. Both of these have several working groups doing work relevant to OAD. Where the American Astronomical Society is very active regarding the direct needs of research astronomers, these two IAU commissions have been far more active socially beyond the needs of astronomers.

There were several groups focused specifically in Africa: AIMS-Next Einstein, the African Astronomical Society, South African Astronomical Observatory, and there was an artist group doing work in the town closest to the Observatory in Sutherland, South Africa.

I was given two minutes to represent the National Society of Black Physicists. I shared the following:

  • 1. The National Society of Black Physicists is a global professional society based in the United States.

    2. We are active participants in the African Astronomical Society.

    3. We are interested in international scientific collaborations.

    4. We are interested in international exchanges.

    5. We are exploring forming a regional node in the United States. We aren’t the only ones there is also Steward Observatory and the Vatican Observatory.

    6. We have a long-term investment in the development of astronomy in Africa.

    7. We offer our services to help OAD anyway we can.

  • There are three established task forces:

    1. Astronomy for Universities and Research

    2. Astronomy for Children and Schools

    3. Astronomy for the Public

    Today we will be meeting within these task force to brainstorm, keeping in mind the OAD mission: To help further the use of astronomy as a tool for development by mobilizing the human and financial resources necessary in order to realize its scientific, technological and cultural benefits to society. OAD Director Kevin Govender reminds us that astronomy is not the silver bullet to solve all the problems fo the world. We are also to consider the economic impact of our activities.

    The Global Office of Astronomy for Development December 10, 2011

    Posted by International.Chair in : Astronomy and Astrophysics (ASTRO), Technology Transfer, Business Development and Entrepreneurism (TBE) , add a comment

    by Dr. Jarita Holbrook
    Friday December 9, 2011

    The International Astronomical Union has opened the Global Office of Astronomy for Development in Cape Town, South Africa. The OAD was officially inaugurated in April 2011. The new office is housed in a refurbished building on the grounds of the South African Astronomical Observatory headquarters. It is part of the thriving astronomy community in South Africa.

    SAAO grounds

    My trip to South Africa has three purposes:

    1) To represent the National Society of Black Physicists at the first OAD stakeholders workshop, December 11 – 14, 2011. See http://www.astronomyfordevelopment.org/index.php/oadevents/oadworkshop.

    2) To plan the next African Cultural Astronomy conference for 2014 in Cape Town.

    3) To discuss the findings of my research on the South African National Astrophysics and Space Sciences Programme (NASSP) with NASSP instructors and administrators.

    Today, my focus is on the workshop. What is exciting is that the workshop is structured in an unique way that includes participant input as to what talks they want to hear on the last day! People have submitted possible talks for consideration. Given my absorption with finishing my book on NASSP, I did not submit a potential talk topic.

    My role in the OAD workshop is multifold: Working with Astronomy without Borders, Steward Observatory, and the National Society of Black Physicists, we first considered hosting the OAD in the United States, but ultimately chose to support the South Africa bid, which they won. However, there is the possibility of a USA OAD node, i.e. there is a chance of an OAD satellite office in the United States. Though I haven’t been part of any formal discussions this last year, I know that there is still some interest from US astronomers to have a local office. I think an office in the USA would give greater access to USA based funding organizations that might be interested in financially supporting OAD projects.

    More about OAD: Though based in South Africa, it is a global effort.

    GOAD Office Plaque

    OAD came out of one of the International Year of Astronomy 2009 (IYA2009) projects. There are many IYA2009 people involved in OAD and they will be attending the workshop. Through my IYA2009 involvement I know many of them.

    From the OAD website:

    “The mission of the OAD is to help further the use of astronomy as a tool for development by mobilizing the human and financial resources necessary in order to realize the field’s scientific, technological and cultural benefits to society.”

    OAD specifically addresses for the first time how astronomy positively impacts society economically as well as intellectually. Astronomers often think about and foster connections to K12 education and the public, but rarely think about how astronomy can stimulate local economies. OAD seeks to foster projects that encourage local economies and, more broadly, stimulate development. Though there is a historic connection between astronomy and economic development, it has not been the goal of or of great interest to astronomers. Thus, OAD marks a major change in the way astronomers think about themselves, what they do, and their impact on society.

    I’m looking forward to this workshop!

    OAD office space

    Astronomy Festival in Bangalore, India December 9, 2010

    Posted by admin in : Astronomy and Astrophysics (ASTRO), Cosmology, Gravitation, and Relativity (CGR) , add a comment

    by Dr. Jarita C. Holbrook

    The Bangalore Association for Science Education and the Jawaharlal Nehru Planetarium have partnered to create the Festival of Astronomy: Kalpaneya Yatre 2010.  November 28 – Dec 7, 2010

    The Bangalore Association for Science Education and the Jawaharlal Nehru Planetarium partnered to create the Festival of Astronomy. The Festival occupied the buildings and grounds of Nehru Planetarium. The Festival had four main areas filled with different aspects of astronomy. The entrance to the festival was a temporary addition to the main building spectacularly decorated with images of space and nebulae. The structure held a historical overview of astronomy.

    The historical exhibit consisted of posters focused on particular astronomy achievements and early astronomers, there were a few artifacts such as early astronomy instruments, computer screens showing videos, and one end of the area was a big projection screen. The historical content began with Egypt and the astronomy associated with the pyramids and the Sphinx, then ancient Indian cosmologies and cosmograms, and the Nebra Disk and complex from Bronze Age Germany. Stonehenge was the last poster that was focused on a location and general knowledge rather than focused on a particular astronomer. The selection of astronomers presented start with the Greeks Eratosthenes, Aristarchus, Hipparchus, and Ptolemaeus; a nice addition is of Chinese astronomer Wang Zhenyi and the woman astronomer Fatima of Madrid. The Muslim astronomers are Al-Biruni and Ibn Ul Haitham. The astronomer timeline followed the standard Copernicus-Tycho-Kepler-Gallileo trajectory with the interjection of Somayaji. The trajectory eventually reached Einstein, but before reaching him there is a series of posters dedicated to women astronomers: Caroline Hershel, Anne Jump Cannon, and Maria Mitchell. Jai Sing II, the Jantur Mantar observatory, and the Madras Observatory mark the last mention of non-European astronomers and locations. The remaining posters focused on Newton, Einstein, Eddington, and Hubble, and one more woman astronomer: Cecilia Payne. It is clear that a lot of thought went in to including women astronomers and non-European sites and astronomers.  Each poster clearly revealed what each astronomer discovered that advanced our understanding of the Universe. Where was Chandrasekhar? In the next part of the exhibit: the main building.

    The exhibits in the main building focused on our solar system. There were two models of the solar system, a demonstration of planetary motion, a demonstration of the weather bands of gaseous planets such as those found on Jupiter, models of asteroids, and a 3-D image of the Sun’s surface for viewing with red-blue 3D glasses. Chandrasekhar was found in the solar section where there is information about stellar birth and stellar death. There was a slide show that includes some of the Hubble’s greatest images including interacting galaxies, Einstein arcs, and of course beautiful star formation regions.

    The third area was the favorite of my children: a free standing white tent that was filled with science demonstrations related to astronomy! The children were able to touch and explore the demonstrations with the help of the docents who were also school children. There were about twenty demonstrations including four telescopes that had their covers off to show the optics of refracting telescopes and the mirrors of the reflecting telescopes. Noteworthy were the demonstrations showing the detection of non-visible wavelengths of light: there were demonstrations for ultraviolet, infrared, and fluorescent light. Having recently given an introductory astronomy test where my students got the question on the relationship between distance and flux wrong; the three demonstrations on measuring flux, measuring the maximum intensity of the solar spectrum, and changes in brightness were well done. My personal favorite was a demonstration showing the ring-around-the sun effect using glass beads. The biggest crowds were in this area and it is the one area where my children wanted to return again and again.

    The final area was an sunny yellow and red tent that was open for children to sit and listen to lectures on astronomy. A lecture on solar astronomy was taking place during my visit.

    The Astronomy Festival had enough variety to keep everyone happy: a hall for those interested in the history of astronomy, another for the solar system, hands-on demonstrations of the physics related to astronomy, and live lectures with people knowledgeable about astronomy. If all this is not enough, there were planetarium shows on a variety of astronomy topics every few hours. What was unique is that the docents were school children who were very well trained in explaining the science behind the experiments. It is a great idea to have children teaching children!

    Life in the Margins November 19, 2010

    Posted by ASTRO Section Chair in : Astronomy and Astrophysics (ASTRO), History, Policy and Education (HPE) , add a comment

    by Dr. Jarita C. Holbrook

    This week I have been writing my annual report to the National Science Foundation on the Astronomy Networks project.  Since I moved into cultural astronomy, I have lived the life of an interdisciplinary scholar in the margins.  My behavior and choices are consistent with the research findings I discussed last week: women and minorities tend to find success at the margins of STEM disciplines rather than in the mainstream.  Life in the margins is not bad: I exercise my intellectual freedom, I have a positive international research reputation, and I have been attracting great students.  When I moved into cultural astronomy from the way other academics responded to me (somewhat condescendingly), I determined that I had to get external funding to be taken seriously.  Simply put, it is fine to do interesting research in unestablished areas between disciplinary boundaries, but getting external funding is the official seal of approval.  Many scholars have had the good fortune of having their place in the margins be moved to the center, for example Jeff Marcy and his planet finding projects.

    I am co-PI with Sharon Traweek (UCLA) on an NSF funded project that studies women and minority astronomers and their professional networks.  We are studying how they get involved in big database driven astronomy projects that are mainstream and where they chose to make a contribution.  Are they central or on the margins? Where do they perceive themselves to be and do others agree?

    For my part of the project, I have been focusing on the Large Synoptic Survey Telescope (www.lsst.org).  The LSST has not been built.  It is estimated to be completed in 2012.  LSST when it is finished will break all the rules of big telescope construction, management, computing, and collaboration.  There will be no proprietary data, that is anyone and everyone can access the data soon after the observations.  Of course, having an internet connection and enough memory to handle the large images are necessary.

    I have been involved in the International Astronomical Union’s new Astronomy for Development initiative.  Projects such as LSST will present a great opportunity for astrophysicists outside of Europe and North America to work with the best data available.  The catch is that they have to learn how to work with LSST data now, in order to be ready when the real data starts flowing.  International scientists need to get networked into LSST now! The LSST team has created a simulator that can be used to simulate what the data will look like.  The simulated data can be used to test if certain astrophysical questions are feasible given the physical parameters of the LSST and the data it will produce.  As with all aspects of the LSST project, the simulator is freely available.  LSST is the type of project that I can admire.

    I’m involved in the formation of the African Astronomical Society.  At the upcoming IAU Symposium “Tracing the Ancestry of Galaxies – on the Land of our Ancestors” in Ougadougou, Burkina Faso, this December, the first meeting of the working group will take place.  I secretly hope that they will go ahead and announce the formation of the Society there.  If not an official announcement will take place at MEARIM2 – the second Middle-East and Africa Regional IAU Meeting in South Africa in April 2011.  The newly formed Society should work to make sure that African astrophysicists get involved in LSST.  Unfortunately, because I am in India I will not go to Burkina Faso.

    The Astronomer Networks project is also an oral history project, so our interviews are tape recorded and will be edited for an online archive.  I have interviewed a dozen astronomers thus far, but this is far too few to draw any grand conclusions.  The graduate students and postdocs on the project have collectively interviewed a dozen more, still not enough data.  However, we are on our way and have discovered some interesting results that may change as we collect more interviews.  What I find most significant about the oral history part of the project is that most oral histories of astronomers focus on the old and famous.  Few include the young and becoming astronomers at a stage in their careers where they have committed to being part of a project that may or may not be spectacular.  Even fewer include self-identified minority astronomers, though many include a smattering of women.

    In a reflexive loop, I am in the disciplinary margins studying astronomers in the margins after having been an astronomer not so in the margins.

    I’m now in Bangalore, India, visiting the Raman Research Institute (www.rri.res.in).  Next week begins a ten day festival focused on astronomy at the local planetarium.  I plan to write an article about the festival for one of the popular astronomy magazines.