jump to navigation

Synchrotron Science on the Move in South Africa February 4, 2012

Posted by International.Chair in : Nuclear and Particle Physics (NPP) , add a comment

By Sekazi K. Mtingwa
MIT and African Laser Centre
Consultant to Brookhaven National Laboratory

Excitement is growing within South Africa’s synchrotron light source user community. That excitement led to a two-day workshop, held December 1-2, 2011, in Pretoria to finalize plans for the drafting of a strategic plan document to be submitted to the government’s Department of Science and Technology (DST), which is broadly responsible for science and technology in the country, and the National Research Foundation (NRF), which is responsible for the distribution of research funding similar to what the National Science Foundation does in the United States. Top officials from those agencies attended the workshop, including Romilla Maharaj, NRF Executive Director of Human and Institutional Capacity Development; Rakeshnie Ramoutar, NRF Program Director of Strategic Platforms; and Takalani Nemaungani, DST Director of Global Projects. Daniel Adams, Chief Director: Emerging Research Areas & Infrastructure at the DST, provided funding for the workshop and the South African Institute of Physics (SAIP), which is similar to our American Physical Society, handled the logistics.

The entity that mainly drove the convening of the workshop was the Synchrotron Research Roadmap Implementation Committee (SRRIC), which is chaired by Tshepo Ntsoane from the South African Nuclear Energy Corporation (NECSA) and co-chaired by Wolf-Dieter Schubert from the University of the Western Cape.

Approximately forty scientists attended the meeting, including those from international facilities. Herman Winick of SLAC and Sekazi Mtingwa of MIT attended, and Brookhaven National Laboratory’s Erik Johnson and Ken Evans-Lutterodt joined via teleconferencing. Johnson and Evans-Lutterodt discussed the pros and cons of South Africa’s inheriting Brookhaven’s second generation light source called the National Synchrotron Light Source, which is soon to be replaced by NSLS II. However, the consensus of the workshop was that a new third generation facility would much better serve national and regional needs. The largest contingent of foreign visitors were from the various European light sources, including José Baruchel, Jürgen Härtwig, and the Laboratory Director General, Francesco Sette, from the European Synchrotron Radiation Facility (ESRF) in Grenoble, France; Jasper Plaisier from Elettra in Trieste, Italy; Trevor Rayment from Diamond in Oxfordshire, UK; and Hermann Franz from Petra III in Hamburg, Germany. Oxford University’s Angus Kirkland did an outstanding job of facilitating the two-day meeting.

South Africa is relatively new to the international community of synchrotron light source users. Simon Connell, of the University of Johannesburg, has documented the history of South African scientists’ usage of synchrotron radiation. The first were Trevor Derry and Jacques Pierre Friederich “Friedel” Sellschop (deceased), both from the University of the Witwatersrand (Wits). In 1994, Derry performed studies of diamond surfaces at both the Synchrotron Radiation Source-Daresbury Laboratory and ESRF. During the same year, Sellschop participated in other diamond studies at ESRF. Then in 1996, Giovanni Hearne, currently at the University of Johannesburg, used the facility at ESRF to study materials under extreme pressures. Bryan Doyle, now at the University of Johannesburg, served as a postdoctoral researcher at ESRF around 1999. From those early efforts, the synchrotron light source user community started to grow.

Hearne’s early experiences at ESRF so excited him that, upon returning to South Africa, he wrote a two-page letter to Khotso Mokhele, then President of the Foundation for Research Development (now the National Research Foundation), to share those experiences and impress upon him that a synchrotron light source is a key single tool that could have wide impact across many scientific disciplines. Moreover, Hearne suggested that a long-term goal should be for South Africa to construct its own light source via a consortium of international partners, especially involving neighboring countries in Southern Africa.

In 2002, at the urging of the Edward Bouchet-Abdus Salam Institute (EBASI), which is an organization based at the International Centre for Theoretical Physics (ICTP) in Trieste that promotes African – African American collaborations, the African Laser Centre included the design and construction of a synchrotron light source as a long-term goal in its Strategy and Business Plan. Next, Tony Joel and Gabriel Nothnagel of NECSA co-authored a motivational paper entitled, The South African Light Source: Proposal for a Feasibility Study for the Establishment of an African Synchrotron Radiation Facility (2003), followed by Tony Joel’s paper, The South African Synchrotron Initiative: The South African Light Source: A Synchrotron for Africa – Strategic Plan (2004). On another front, in 2004, the DST/NRF/SAIP commissioned an international panel of experts that released the report, Shaping the Future of Physics in South Africa, which called for consideration of new flagship projects to complement those in astronomy, such as the South African Large Telescope (SALT) and the Square Kilometre Array (SKA). They used a synchrotron light source as a prime example of such a project. Key members of that panel from the U.S. were Ken Evans-Lutterodt, S. James Gates from the University of Maryland-College Park, and Guebre Tessema from the National Science Foundation.

The first organizational structure for a synchrotron science community took shape in 2003, when a committee of synchrotron users established the South African Synchrotron Initiative (SASI). Van Zyl de Villiers of NECSA played a key role in getting DST’s participation in SASI activities. The leadership of SASI mainly consisted of Tony Joel; Simon Connell; Giovanni Hearne; and Lowry Conradie, an accelerator physicist from South Africa’s national accelerator center called iThemba LABS, located just outside of 3 Cape Town. As a result of its participation with SASI, in January 2005, the DST itself assumed a leading role in building the synchrotron science community by forming the Synchrotron Task Team (STT), with Tshepo Seekoe of the DST serving as Chair and Simon Connell leading the development of the science case. It was during this period that the synchrotron science community began to mobilize as a coherent group.

With the assistance of SOLEIL, ESRF and other organizations, the STT organized the first two of a series of roughly biennial Science @ Synchrotrons Conferences (S@S) in November 2005 and February 2007. Both conferences were extremely successful in developing new projects and sparking the interest of students in synchrotron light source training. Members of the U.S. physics community, including Herman Winick, Alfred Msezane of Clark Atlanta University, and Sekazi Mtingwa, participated in planning and giving presentations at those conferences, which helped to establish a close partnership between South African synchrotron users and their foreign colleagues, especially the French. After the second conference in 2007, the synchrotron community further empowered itself with the establishment of SRRIC, which succeeded the STT in championing synchrotron science in South Africa. The first Chairs of SRRIC were Simon Connell and Giovanni Hearne. Following the S@S conference in February 2009, Brian Doyle assumed the Chair, followed by Tshepo Ntsoane.

All the above-mentioned activities culminated in the excitement that birthed the December 2011 Strategic Plan Workshop. The NRF representatives requested that SRRIC document the outputs of the workshop by March 2012 in the form of a white paper strategic plan. Then it would study the white paper to determine if it would give the go-ahead for the development of a detailed business plan by June 2012. Those dates were selected to coincide with the dates of the various stages of the government’s budgeting process. SSRIC appointed a three-person committee to write the strategic plan, consisting of Brian Masara, Executive Officer of SAIP; Douglas Sanyahumbi, Director of the Technology Transfer Office at the University of the Western Cape; and Sekazi Mtingwa, with the latter chairing the committee.

Although the strategic plan has not been completed, there are some overarching comments that can be made. First, there is widespread agreement that the mission of SRRIC going forward will be as follows: To support and facilitate the development and growth of synchrotron science in South Africa in order to ensure that it contributes to excellence in science, innovation and industrial development by exploiting the benefits of synchrotron radiation in advancing fundamental and applied science through

1. Developing human capital, including attracting back the African scientific Diaspora (brain gain) and mitigating any threat of brain drain of young South 4 Africans who have recognized this as a key research tool for their career development;
2. Developing key and/or strategic international collaborations;
3. Ensuring financial support to South Africans whose proposals successfully compete for beam-time at international synchrotron facilities; and
4. Promoting awareness and use of synchrotron science and its capacity to enable the exploration of new frontiers of technology.

In pursuing this mission, the synchrotron science community and the government must undertake a number of key initiatives, including

1. Deciding at what level it should formalize its relationships with foreign light source facilities, especially with ESRF, which is the most heavily used by South African researchers; (Francesco Sette invited South Africa to join ESRF as a Scientific Associate at the 1% level, since its researchers’ utilization of that facility is already approximately at that level.)
2. Studying the feasibility of constructing South African or multinational beam-lines at foreign synchrotron facilities;
3. Promoting a significant growth in the number of synchrotron users, with a heavy emphasis on increasing the number of students being trained, such as at the many synchrotron radiation schools that are offered at a number of international facilities and institutions, such as ICTP;
4. Developing programs to preserve and expand the existing technical expertise, such as sending scientists and engineers abroad to join accelerator teams at foreign facilities to expand capabilities in areas such as ultra-high vacuum systems, radiofrequency cavities, magnets, power supplies, and controls;
5. Improving the local, critical feeder infrastructure that allows researchers to prepare and analyze samples before and after being shipped for studies at foreign synchrotron facilities
6. Promoting greater involvement of industrial users;
7. Studying the feasibility for constructing a third generation light source;
8. Developing mechanisms to educate the public about the revolutions in science and technology, such as the discovery of new pharmaceuticals, that synchrotrons afford.

The figure appended provides a plot of South Africa’s synchrotron light source usage in terms of the number of users, beam-line shifts, graduate students trained, and visits to synchrotron facilities. The data represent a rough approximation, based on preliminary surveys; however, note that the 2011 data represent only part of the year, since 2011 had not ended by the time of the workshop. According to the data, the number of students trained at foreign facilities has increased from six (6) in 2005 to thirteen (13) in 2011, thus showing a growth in human capital, especially over the past three years. The long 5 distances and substantial travel expenses are major factors that impede the increase in the number of students being trained. A local facility would be most advantageous to address this need.

Synchrotron Usage in South Africa

Among the workshop presentations, two were especially notable, since they involved applications of synchrotron light source techniques to disciplines for which many are not aware. One involved research in paleontology, for which Kristian Carlson from Wits discussed his collaboration with Lee Berger, also from Wits, and Paul Tafforeau from ESRF. Among other things, they perform dating and craniodental investigations of the possible human ancestor, Australopithecus sediba, which is the much-publicized fossil remains that Berger’s nine-year-old son, Matthew, discovered in 2008 while assisting his father in field work. In a presentation involving light source applications to heritage science, Leon “Jake” Jacobson from the McGregor Museum (Kimberly), discussed his applications of light sources to study rock art, namely ancient paintings on stones. He investigates such issues as the composition of the paints and how their interactions with rock substrates contribute to the art’s conservation. There is increasing worldwide interest in the use of synchrotron radiation in art and archaeology.

Finally, it is notable that Esna du Plessis and Bruce Anderson attended the workshop to represent the oil and gas company, Sasol Technology. They reported on their use of synchrotron radiation in pursuing extended X-ray absorption fine structure techniques for the study of H2, CO and synthetic gas activation of nano iron. They also made a strong case for a local source to enable more industrial use of light sources.

In conclusion, the momentum is building rapidly within the South African synchrotron science community. SRRIC, as its representative, is committed to maintaining, and indeed intensifying, that momentum. Based upon the Strategic Plan that summarizes the outputs of the December 2011 workshop, SRRIC is looking forward to a favorable decision from DST/NRF requesting it to proceed to the development of a detailed Business Plan by June 2012 in order to move synchrotron science in South Africa to the next level of international prominence.

January 30, 2012

This article is also published in the Spring 2012 Newsletter of the Forum on International Physics of the American Physical Society.

Morgan State University Student Spends Summer at CERN July 24, 2011

Posted by admin in : History, Policy and Education (HPE), Nuclear and Particle Physics (NPP) , add a comment
Eric Michael Seabron, a junior physics major and Morgan honor student with a 3.66 grade point average was selected to join an exclusive 18-member U.S. physics team for a 10-week summer internship at CERN (European Organization for Nuclear Research) in Geneva, Switzerland. 
 
“This internship is one of the most competitive internships an undergraduate student of physics can compete for in the United States.  Mr. Seabron will benefit from this experience by expanding both his knowledge of physics and participating in the greatest scientific experiment ever proposed, the Large Hadron Collider (LHC). Participation in this internship increases his visibility as a up-and-coming young physicist, and his opportunities for getting into a Tier-1 physics graduate program with schools like Michigan, Harvard, Stanford and Princeton to name a few,” says Dr. Keith Jackson, chair of Morgan’s physics department.

Mr. Seabron is a member of the University of Michigan’s ATLAS team sponsored by a National Science Foundation research grant for undergraduates to work on a valuable piece of equipment (Large Hadron Collider) on the ATLAS experiment. ATLAS (A Toroidal LHC ApparatuS) is one of the six particle detector experiments constructed at the LHC. He and other student colleagues will assist in the commissioning of ATLAS EE detectors, analyze event data to create R-T curves and Muon Spectrometer graphs.

Since 2009, more than 2900 scientists and engineers from 172 institutions in 37 countries have worked on the ATLAS experiment. 

The ATLAS experiment’s primary objective is to detect particles created after high-energy proton on proton collisions.  ATLAS will allow us to learn about the basic forces that have shaped our Universe since the beginning of time (if time has a beginning) and that will determine its fate. Research at ATLAS will provide answers to some of the most basic questions in physics such as the origin of mass, proof of existence of multiple dimensions, unification of fundamental forces, and evidence for dark matter candidates in the Universe. ATLAS brings experimental physics into new territory. Most exciting is the completely unknown surprise – new processes and particles that would change our understanding of energy and matter.
 

“Students who are successful strive to do more than meet the minimum level of academic performance. If they take this attitude toward their undergraduate education they will find a plethora of new experiences, challenges and opportunities waiting for them, like Mr. Seabron,” says Dr. Jackson.  

 

Eric is standing holding ladder with Michigan teammate Kareem Hegazy (on ladder) in front of 20 ft. battery cells.

NSBP and SAIP Members on LHC Lead-Lead Collisions November 16, 2010

Posted by ASTRO Section Chair in : Astronomy and Astrophysics (ASTRO), Cosmology, Gravitation, and Relativity (CGR), Mathematical and Computational Physics (MCP) , 2comments

LHC Achieves Heavy Ion Collisions
On Sunday November 7 at 1 am local time the first heavy ion collisions were observed in the Large Hadron Collider (LHC) near Geneva, Switzerland.  By the following Monday morning the heavy ion beam was stably producing a steady stream of collisions such that the physics analysis could start in earnest.  By the end of the week a sufficient number of events had been observed to reach the first conclusions.

Witnessing this historic event was Dr. Zinhle Buthelezi from South Africa’s iThemba LABS who was on duty in the control room of the ALICE (A Large Ion Collider Experiment) detector at the time of the first collisions.  Other members of the iThemba LABS team, Deon Steyn, Siegie Foertsch, and Zeblon Vilakazi, as well as the team from the University of Cape Town led by Jean Cleymans have also been participating in the ALICE experiment.  More

ALICE, Quark-Gluon Plasmas and the Origin of the Universe
The goal of ALICE is to observe the so-called Quark Gluon Plasma (QGP).  This plasma is partially analogous to the more well-known electronic plasma that results when a gas is so hot that its electrons are liberated from their atomic nuclei.  Like electrons are constituents of atoms, quarks and gluons are constituents of nucleons – protons and neutrons.  They can likewise be “deconfined” from nucleons at high energy densities like those that existed at the very moment of the Big Bang, or can be reproduced in high energy accelerators like the Relativistic Heavy Ion Collider (RHIC) or the LHC.  Thus the results gained from ALICE and RHIC give insights into the state of energy and matter in the first microseconds of the universe, before condensation into neutrons, protons, and subsequently atoms.   More

NSBP Members Clifford Johnson and Stephon Alexander on the ALICE collisions
Experimental Excitement
ALICE – A Cosmologist’s Point of View

Theoretical physicists have studied QGPs using a variety of techniques.  Perhaps the most successful method is due to Dr. Juan Maldacena, a plenary speaker at the 2005 Joint Annual Conference of the National Society of Black Physicists and the National Society of Hispanic Physicists.  The so-called “AdS/CFT correspondence” relates string theory to gauge theories like quantum chromodynamics (QCD) which describes the interactions between quarks and gluons. Professor Jim Gates has commented, “So, the next time someone tells you that string theory is not testable, remind them of the AdS/CFT connection…”  Since then experimental, observational, and theoretical evidence has expanded from particle theory to condensed matter physics.

South African Participation at CERN
In addition to the ALICE experiment, South African physicists are participates in the ATLAS experiment.  Dr. Simon Connell, President-elect of the South African Institute of Physics leads the ATLAS Team at the University of Johannesburg.  “ATLAS is designed to answer some of the most fundamental questions about the nature of the universe, like how and why particles have mass,” he explains.

This past summer South Africa hosted the first biennial African school on fundamental subatomic physics and its applications. More

2010 African Physics School

Courtesy of Brookhaven National Lab

South African participation in particle physics brings many benefits to the country and continent, most notably in information and computing technology (ICT).  SANReN, the grid computing network that allows physicists in South Africa to receive results from the LHC is used by many others in science and business, and this network will by design be extended to everyday consumers and learners.  More

ALICE, Quark-Gluon Plasmas and the Origin of the Universe – A Cosmologist’s Comment November 16, 2010

Posted by ASTRO Section Chair in : Astronomy and Astrophysics (ASTRO), Cosmology, Gravitation, and Relativity (CGR) , 1 comment so far

Currently the best modern framework for understanding the origin of large scale structure in our universe is called cosmic inflation.

While still not completely resolved, inflation predicts the observed features of the universe split seconds after the big bang and three hundred thousand years during another era where the universe was filled with another type of plasma-an ionized gas of baryons and photons.   However when inflation was first ignited (10-36 seconds), the universe was thought to be filled with pure vacuum energy, no particles and radiation.

One of the big mysteries in cosmology and fundamental physics is to understand precisely how inflation ended and dumped its energy into the form of radiation.  A curious hint is that at time 10-12 seconds the universe was filled only with the quark-gluon plasma.

A key mystery of cosmology and fundamental physics is to understand how the universe went from the inflating state to the quark-gluon plasma state.  By understanding this new state of matter, the quark gluon plasma, physicists can help us understand the physics of the early universe right at the LHC.

Likewise, string theorists are developing new tools within the framework of M/String-Theory called the Ads/CFT correspondence which gives new insights into the non-perturbative physics by relating the physics of charged black holes “holographically” to the quark-gluon plasma.  It is amusing to speculate on how this new understanding could impact the experiments at the LHC and any possible relation to the physics of cosmic inflation.

Stephon Alexander