jump to navigation

Science Policy Resources August 6, 2015

Posted by admin in : History, Policy and Education (HPE) , add a comment

How Congress Works

How Congress Works: Tying It All Together: Learn about the Legislative Process
Source: OpenCongress.org

How Congress Works
Source: The Center on Congress at Indiana University

Overview of the Authorization-Appropriations Process
Source: Congressional Research Service

Authorization and Appropriation
Source: Paul Jenks, LLRX.com

AAAS Center for Science, Technology and Congress
Source: American Association for the Advancement of Science

Committees in the House and Senate Relevant to Science

House Committee on Science and Technology
House Committee on Energy and Commerce
House Appropriations Subcommittee on Commerce, Justice and Science
House Appropriations Subcommittee on Energy and Water
Senate Committee on Commerce, Science and Transportation
Senate Subcommittee on Space, Science and Competitiveness
Senate Subcommittee on Oceans, Atmospheres, Fisheries and Coast Guard
Senate Appropriations Subcommittee on Commerce, Justice, Science, and Related Agencies
Senate Appropriations Subcommittee on Subcommittee on Energy and Water Development

The Federal Science Budget

Introduction to the Federal Budget Process
Source: Center for Budget and Policy Priorities

Budget 101 – A guide to the federal budget-making process
Source: The Washingtonpost.com

AAAS R&D Budget and Policy Program
Source: American Association for the Advancement of Science

Podcast on Science Funding
Professor Mike Lubell, Chair and Professor, Department of Physics
City College of the City University of New York
Director of Public Affairs
American Physical Society
Washington, DC
Source: Science Friday with Ira Flatow, January 12, 2007

How to Impact the Policy Process

Communicating with Congress
Source: American Institute of Physics

Congressional Visits Day
Source: Science-Engineering-Technology Working Group

Nonprofits and Lobbying: Yes, They Can!
Source: American Bar Association

NAFEO Advocacy Handbook
Source:National Association for Equal Opportunity in Higher Education (NAFEO)

Physicists and Lobbying
Source: American Physical Society

Scientists Must Learn to Lobby
Source: THE SCIENTIST @ 1(12):9, 4 May 1987

Participate in a DC Fellowship Program

AAAS Congressional Fellowship
American Institute of Physics State Department Science Fellowship
American Institute of Physics Congressional Science Fellowship
American Physical Society Congressional Science Fellowship
American Geophysical Union Congressional Science Fellowship
Optical Society of America Congressional Science Fellowships
Jefferson Science Fellowship

The States, Research and Higher Education

State Science and Technology Policy Advice: Issues, Opportunities, and Challenges: Summary of a National Convocation
Source: National Academies Press

State Policy Issues for Higher Education
Source: American Association of State Colleges and Universities

Grapevine project- An annual compilation of data on state tax support for higher education
Source: Illinois State University

The NCHEMS Information Center for State Higher Education Policymaking and Analysis (The Information Center)
Source: The National Center for Higher Education Management Systems

Bibliography

American Association of Physicists in Medicine – Government Affairs
American Association of Physics Teachers – Public Policy
American Astronomical Association – Public Policy – Bringing policy issues to astronomers
American Geophysical Union – Science Policy
American Institute of Physics – Public Policy Center
American Physical Society – Policy and Advocacy
Association of American Universities – Policy Issues
Materials Research Society – Policy/Advocacy
National Society of Black Physicists – Policy
Optical Society of America – Public Policy
SPIE – Public Policy News
NAFEO Advocacy

Issues of Equity in Physics Access and Enrollment August 6, 2015

Posted by PER Section Chair in : History, Policy and Education (HPE), Physics Education Research (PER) , add a comment

High school physics is a gateway course for post-secondary study in science, medicine, and engineering, as well as an essential component in the formation of students’ scientific literacy.  Yet, despite reports to the contrary, the availability of physics as a course for high school students is not equitably distributed throughout the United States.

While some schools provide physics for all who wish to take it, a more common scenario is limited availability. This is particularly true in urban districts, where physics is not universally available in secondary school.  The existence of policies that restrict science opportunities for secondary students results in diminished outcomes in terms of scientific proficiency.

Recently researchers at Columbia University examined the 316 secondary schools in the New York City Public School system to identify factors related to availability of physics courses.  New York City’s (population 8.1 million) public schools system  is the largest school district in the United States, with approximately 300,000 secondary school students (15.1% White, 33.6% Black, 38.2% Hispanic, 13.0% Asian).

Overall Enrollment

Overall, physics enrollment in the 298 responding surveyed schools totals 14,935 (5.2%) out of 286,862 students. This corresponds to approximately 21% of students graduating having studied physics, which is lower than the state and national average of 31% for public schools. Analysis of the availability of physics in schools shows that access to physics is not equitably distributed – a remarkable 55% (164 of 298) of the surveyed New York City high schools simply do not offer physics as a subject. This translates to approximately 23% of the city student population not having access to any physics course in high school.

Where is Physics Available?

School size strongly influences whether physics is available. The vast majority of large high schools offer physics as a course, while fewer than half of mid-sized schools and only a quarter of the small schools do. Eliminating schools that only have grades 9 or 10 (and thus may offer physics in future years), still only 39% of small schools offer physics. Although small schools present a promising option in many respects, the question of access to advanced science courses needs to be addressed. Student graduation rates are likely to increase, but the city may actually graduate fewer physics students than they do today.

New York State leads the nation in Advanced Placement participation, with 23% of its high school graduates earning a passing score on at least one exam before graduation (the national average is 14%). Despite this prominence, AP Physics is a rarity in New York City’s public high schools, offered in only 20 (6.7%) of the surveyed schools, including all of the magnet schools.

Correlations to Race and Socioeconomic Status

The racial composition of students in schools that do not offer physics is notably different from the city as a whole, with White and Asian students much less likely to be found in these schools.Schools that offer AP Physics also show a much higher percentage representation of Asian and White students.Schools that do offer physics typically have a racial composition of 36% Black, 36% Hispanic, 15% White, and 13% Asian; schools that do not offer physics have 45% Black, 46% Hispanic, 5% White, and 5% Asian.These disparities illustrate large racial inequities in access to physics.

Socioeconomic status, measured by percent eligible for free lunch, displays a similar relationship, with poorer students having restricted access to schools that provide physics as a science option.The average percentage of students who qualified for free lunch in New York City was 69% during 2004-2005; compared with 77.7% at non-physics schools and 53.3% at schools that offer physics.

Both race and socioeconomic status are inherent factors in determining the likelihood that students have access to Advanced Placement physics in NYC. Only 33.5% of students in schools offering AP Physics are eligible for free lunch. The racial breakdown of students showed similar disparities. The percentage of White and Asian students is nearly triple the citywide average in schools that offer AP Physics, while the percentage of underrepresented minorities is 38% lower than the citywide average.Further illustrating this point, the Bronx, the poorest borough in New York City with the largest population of underrepresented minorities, has only two high schools that offer AP Physics (one is a highly selective science magnet school).

Often, students’ addresses, race, or socioeconomic status are major determining factors in whether they have the opportunity to study secondary physics at any level. This inequity in access to physics needs to be addressed in a comprehensive plan to improve science education for students in urban locales if the goal of “science for all” is to be attained. Major changes are required in schools’ structuring of physics course offerings; additionally, keeping an eye on racial and socioeconomic balance is essential in providing socially just opportunities in the study of physics. The evidence presented here is a starting point for identifying the extent of inequities in order to develop long-term reform efforts to improve physics access.

Policy Recommendations

NSBP calls for the following policies to increase access to K-12 physics courses for all students.

  1. States and the NCAA, which collects high school course data, should improve their databases of what schools are offering physics courses.  Each State should have a verifiable system of course offerings and student outcomes.
  2. In the No Child Left Behind Act or its successor, Congress should emphasize opportunity to learn and adequate funding.
  3. Congress, the States, STEM and teacher professional organizations should have mechanisms for meaningful science education standards for all K-12 schools and students.

For more information on the New York City schools study contact
Angela M. Kelly, Ph.D.
Department of Physics & Astronomy
Center for Science & Mathematics Education (CESAME)
CESAME: 094 Life Sciences Building | 631.632.7075 (office)
PHYSICS: A-141B Physics Building | 631.632.8168 (office)
Stony Brook University
Stony Brook, NY 11794-5233
www.stonybrook.edu/cesame

What does Physics First mean to you? April 29, 2012

Posted by admin in : History, Policy and Education (HPE) , add a comment

Did you know that in today’s economy, where millions cannot find a job, there are hundreds of thousands of jobs for which employers cannot find qualified U.S. born workers?

What does physics education have to do with putting your child in position to be among those who can qualify for the jobs of tomorrow in advanced manufacturing and traditional STEM fields?

• Physics is a gateway course for post-secondary study in science, medicine, and engineering, as well as an essential component in the formation of students’ scientific literacy.
• Physics classes hone thinking skills.
• An understanding of physics leads to a better understanding of other science disciplines. Physics classes help polish the skills needed to score well on the SAT and ACT.
• College recruiters recognize the value of taking high school physics.
• College success for virtually all science, computing, engineering, and premedical majors depends in part on passing physics.
• The job market for people with skills in physics is strong.
• Knowledge of physics is helpful for understanding the arts, politics, history, and culture.
Ref: Ten Reasons Why No Student Should Go Through High School Without Taking Physics

Currently only 25% of Black and Hispanic high school students take any course in physics. Thus many do not even get to the gateway. The availability of physics as a course for high school students is not equitably distributed throughout the U.S. While some schools provide physics for all who wish to take it, a more common scenario, particularly for urban schools, is limited availability. The existence of policies that restrict science opportunities for secondary students results in diminished outcomes in terms of scientific proficiency, and lack of diversity in the science, technology, engineering and mathematics professions.

Reforming the system and Physics First
In most high schools the science course sequence is chemistry first, biology second and physics last. This sequence was born many decades ago before people knew a lot of the fundamental scientific principles of chemistry and biology (Shepard and Robbins, 2003). We now understand that physics is at the foundational roots of all that we know and can learn about the other sciences. So it makes sense to first learn the fundamental concepts of physics before proceeding to learn chemistry, biology and Earth sciences. This is called logical development of scientific cognition, and it is imperative that in the 21st century that our education system catches up to this idea.

Physics First is the educational strategy that sequences high school science courses beginning with physics in the 9th or 10th grade, chemistry in 10th or 11th grade, culminating with biology and earth science in the 12th; while developing proficiency in mathematics and computing in lock-step over the entire 4 years. Schools that have adopted Physics First have shown much higher student appreciation for science, more science course taking in subsequent grades, and higher test scores. But also, when a school commits to Physics First, in many cases they are reforming the system from “physics not at all”. And that reform of providing a formal opportunity to learn physics allows students to pass through an important gateway to higher achievement and prosperity.

A first course in physics need not be overly saddled with advanced mathematics. The emphasis should be focused on conceptual understanding rather than mathematical manipulation. In fact conceptual understanding of physics need not wait until high school. Even middle school students can profit from a conceptual physics course. Conceptual understanding of physics taps into students’ natural curiosities of how and why the world the world works around them. That conceptual understanding, not its mathematical expression, is what will improve performance in later courses in other disciplines. As mathematical maturity is further developed, students can revisit the advanced mathematical expression of physics.

Richard Hake has suggested that Physics First could be the opening battle in the war on science/math illiteracy  as envisaged by the AAAS ‘Project 2061.  This is because a widespread first physics course for ALL ninth graders might (a)
help to overcome some systemic roadblocks to science/math literacy of the general population – most importantly the severe dearth of effective pre-college science/math teachers, (b) enhance the numbers of physics major and graduate students, through programs designed to provide a large corps of teachers capable of EFFECTIVELY teaching physics to vast numbers of students in the Physics First schools: ninth-graders plus those taking high school honors and AP physics courses.

What can you do?
Every child deserves the opportunity to learn physics. This is a message you must make to your teachers, principals, and district administrators. Physics First works out very well for high school students and should be vigorously supported as an important opening battle in the full scale war on science/math illiteracy.  But learning physics does not have to wait until high school. With the availability of all kinds of smart phone apps, even middle grade students can do experiments in motion, sound and light, which are bedrock principles in physics. And in the primary grades, learning physics comes when teachers tap into young kids’ natural curiosity about how and why things work. The key to developing kids of today for jobs of the future is to foster curiosity, encourage discovery, and provide opportunities to learn concepts and principles.

National Alliance of Black School Educators Endorses Physics First March 16, 2012

Posted by admin in : History, Policy and Education (HPE) , 4comments

Position Statement of the National Alliance of Black School Educators
Approved by the Board of Directors, March 1, 2012

Physics is a gateway course for post-secondary study in science, medicine, and engineering, as well as an essential component in the formation of students’ scientific literacy. Physics classes hone thinking skills. An understanding of physics leads to a better understanding of other science disciplines. Physics classes help polish the skills needed to score well on the SAT and ACT. College recruiters recognize the value of taking high school physics. College success for virtually all science, computing, engineering, and premedical majors depends in part on passing physics. The job market for people with skills in physics is strong. Knowledge of physics is helpful for understanding the arts, politics, history, and culture.

Currently only 25% of Black and Hispanic high school students take any course in physics1. Thus many do not even get to the gateway. The availability of physics as a course for high school students is not equitably distributed throughout the United States. While some schools provide physics for all who wish to take it, a more common scenario, particularly for urban schools, is limited availability2. The existence of policies that restrict science opportunities for secondary students results in diminished outcomes in terms of scientific proficiency, and lack of diversity in the STEM professions.

In July 2011 the National Academy of Sciences released a framework for next generation of science standards. The framework consists of number of elements in three dimensions: (1) scientific and engineering practices, (2) crosscutting concepts, and (3) disciplinary core ideas in science. It describes how they should be developed across grades K-12, and it is designed so that students continually expand upon and improve their knowledge and abilities throughout their school years. To support learning, all three dimensions need to be integrated into standards, curricula, instruction, and assessment. The framework includes core ideas for the physical sciences, life sciences, and earth and space sciences since these are the disciplines typically included in science education in K-12 schools.

The idea of building up an integrated picture of science phenomena resonates very well with the principles of Physics First, the curricular strategy that sequences high school sciences courses beginning with physics in the 9th or 10th grade, chemistry in 10th or 11th grade, culminating with biology and earth science in the 12th; while developing proficiency in mathematics and computing in lock-step over the entire 4 years3. Physics First means more students will have the formal opportunity to learn physics and thus pass through the gateway to higher achievement and prosperity.

A first course in physics need not be overly saddled with advanced mathematics. The emphasis should be focused on conceptual understanding rather than mathematical manipulation. In fact conceptual understanding of physics need not wait until high school. Even middle school students can profit from a conceptual physics course. Conceptual understanding of physics taps into students’ natural curiosities of how and why the world works around them. That conceptual understanding is what will improve performance in later courses in other disciplines. As mathematical maturity is further developed, students can revisit the advanced mathematical expression of physics.

Given all the positive benefits, it is imperative that all students have the opportunity to formally learn physics in their secondary school settings. The National Alliance of Black School Educators (NABSE) therefore resolves:

• That all students should be afforded the opportunity to formally learn physics in their secondary school, starting no later than in the middle grades
• That Physics First, as a curricular strategy, should be implemented in all high schools
• That all NABSE members, especially those charged with STEM teaching, apprise themselves of all the issues surrounding Physics First and work collaboratively to build policy, curricula and lesson plans that will well-position our students for the 21st century.
• That NABSE will work with all our partners and fellow stakeholders to offer workshops, in-service training and in-service support that will help teachers at all stages of their careers develop, implement and teach in Physics First sequences effectively.

———————————————-
1. Compared to 41% of White students and 52% of Asian students. Source: Susan White & Casey Langer Tesfaye, Under-Represented Minorities in High School Physics: Results from the 2008-09 Nationwide Survey of High School Physics Teachers, American Institute of Physics, March 2011
2. Angela M. Kelly, Keith Sheppard, Secondary school physics availability in an urban setting: Issues related to academic achievement and course offerings, American Journal of Physics, October 2009, Volume 77, Issue 10, pp. 902
3. American Association of Physics Teachers [AAPT]. Statement on Physics First. Retrieved from http://www.aapt.org/Resources/policy/physicsfirst.cfm, 2002

Morgan State University Student Spends Summer at CERN July 24, 2011

Posted by admin in : History, Policy and Education (HPE), Nuclear and Particle Physics (NPP) , add a comment
Eric Michael Seabron, a junior physics major and Morgan honor student with a 3.66 grade point average was selected to join an exclusive 18-member U.S. physics team for a 10-week summer internship at CERN (European Organization for Nuclear Research) in Geneva, Switzerland. 
 
“This internship is one of the most competitive internships an undergraduate student of physics can compete for in the United States.  Mr. Seabron will benefit from this experience by expanding both his knowledge of physics and participating in the greatest scientific experiment ever proposed, the Large Hadron Collider (LHC). Participation in this internship increases his visibility as a up-and-coming young physicist, and his opportunities for getting into a Tier-1 physics graduate program with schools like Michigan, Harvard, Stanford and Princeton to name a few,” says Dr. Keith Jackson, chair of Morgan’s physics department.

Mr. Seabron is a member of the University of Michigan’s ATLAS team sponsored by a National Science Foundation research grant for undergraduates to work on a valuable piece of equipment (Large Hadron Collider) on the ATLAS experiment. ATLAS (A Toroidal LHC ApparatuS) is one of the six particle detector experiments constructed at the LHC. He and other student colleagues will assist in the commissioning of ATLAS EE detectors, analyze event data to create R-T curves and Muon Spectrometer graphs.

Since 2009, more than 2900 scientists and engineers from 172 institutions in 37 countries have worked on the ATLAS experiment. 

The ATLAS experiment’s primary objective is to detect particles created after high-energy proton on proton collisions.  ATLAS will allow us to learn about the basic forces that have shaped our Universe since the beginning of time (if time has a beginning) and that will determine its fate. Research at ATLAS will provide answers to some of the most basic questions in physics such as the origin of mass, proof of existence of multiple dimensions, unification of fundamental forces, and evidence for dark matter candidates in the Universe. ATLAS brings experimental physics into new territory. Most exciting is the completely unknown surprise – new processes and particles that would change our understanding of energy and matter.
 

“Students who are successful strive to do more than meet the minimum level of academic performance. If they take this attitude toward their undergraduate education they will find a plethora of new experiences, challenges and opportunities waiting for them, like Mr. Seabron,” says Dr. Jackson.  

 

Eric is standing holding ladder with Michigan teammate Kareem Hegazy (on ladder) in front of 20 ft. battery cells.

NSBP and sister societies respond to National Science Board regarding broader impacts criteria July 20, 2011

Posted by admin in : History, Policy and Education (HPE) , add a comment

Merit Review Task Force
National Science Board
Room: 1225N
4201 Wilson Boulevard
Arlington, Virginia 22230, USA

Dear Merit Review Task Force,

Thank you for the opportunity to comment on the proposed revised text for the Intellectual Merit and Broader Impacts evaluation criteria.

Members of the National Technical Association and other minority professional organizations are very concerned about the potential negative impact of the proposed changes to the Merit Review Criteria. We are particularly, concerned about the reduced visibility to the importance of STEM diversification.

Firstly, the proposed changes to the broader impacts text can lead one to infer that diversity is an option and not required since one of the national goals addresses it explicitly. It appears to allow PIs to choose other goals and be evaluated without addressing diversity. Diversity appears to become an option rather than central to all programs and projects and activities, as stated in the existing criteria.

Secondly, utilizing the broad base national goals as the core principles makes it very difficult to develop a clear framework to benchmark or measure the creativity, educational impacts and potential benefits to society of the programs, projects, reviewed. Each national goal embodies a multiplicity of challenges that are interrelated and dependent on other goals. Several goals address education, while others address workforce which are essential to the development of global competitiveness, yet another goal. Measuring impact at the goal level can become problematic. It is easier to identify underlying issues/causes that should be addressed to advance national goal(s) rather than focus on the goals themselves.

We recommend that NSF make it clear that its commitment to diversity is unchanged and indicate how diversity will be factored into the evaluation of all programs, projects and activities regardless of which national goals are addressed.

To advance the frontier of knowledge and achieve global competitiveness, a well trained American born workforce is imperative. Given the projected population demographics, the eligible workforce will shift more to people of color who are underrepresented in STEM. It is more critical than ever that NSF support programs that address workforce development and STEM education improvements to ensure America realizes its STEM related national goals. Whereas, linking programs to national goals is important, it is crucial to first define the national problems that need to be resolved to realize national goals and support research/models that resolve these issues.

Based on these facts, we urge the Merit Review Task Force to focus on criteria changes that identify categories of problem/ issues it will support to advance national goals and at the same time support its commitment to diversity.

Sincerely,

National Organization of Black Chemists and Chemical Engineers
National Society of Black Physicists
National Technical Association

Effect of STEM pipeline leakage March 9, 2010

Posted by Acoustics (ACOU) Section Chair in : History, Policy and Education (HPE) , add a comment

A new study reported in the 30 October issue of Science indicates that the United States risks losing its economic competitiveness because of a lack of social and economic incentives to pursue careers in science and technology. The percentage of students enrolled in science, technology, engineering, or mathematics dropped only slightly from 1972 to 2000, the percentage of these STEM graduates who were working in STEM occupations rose slightly, but the percentage of top students plunged 14%. Likewise the share of the top quintile still holding STEM jobs 10 years out of college dipped, these graduates being drawn into careers in management and finance.